Ядро атома определение. Состав и строение атомного ядра (кратко)

Атомное ядро
Atomic nucleus

Атомное ядро – центральная и очень компактная часть атома, в которой сосредоточена практически вся его масса и весь положительный электрический заряд. Ядро, удерживая вблизи себя кулоновскими силами электроны в количестве, компенсирующем его положительный заряд, образует нейтральный атом. Большинство ядер имеют форму близкую к сферической и диаметр ≈ 10 -12 см, что на четыре порядка меньше диаметра атома (10 -8 см). Плотность вещества в ядре – около 230 млн.тонн/см 3 .
Атомное ядро было открыто в 1911 г. в результате серии экспериментов по рассеянию альфа-частиц тонкими золотыми и платиновыми фольгами, выполненных в Кембридже (Англия) под руководством Э. Резерфорда . В 1932 г. после открытия там же Дж. Чедвиком нейтрона стало ясно, что ядро состоит из протонов и нейтронов
(В. Гейзенберг , Д.Д. Иваненко , Э. Майорана).
Для обозначения атомного ядра используется символ химического элемента атома, в состав которого входит ядро, причём левый верхний индекс этого символа показывает число нуклонов (массовое число) в данном ядре, а левый нижний индекс – число протонов в нём. Например, ядро никеля, содержащее 58 нуклонов, из которых 28 протонов, обозначается . Это же ядро можно также обозначать 58 Ni, либо никель-58.

Ядро – система плотно упакованных протонов и нейтронов, двигающихся со скоростью 10 9 -10 10 см/сек и удерживаемых мощными и короткодействующими ядерными силами взаимного притяжения (область их действия ограничена расстояниями ≈ 10 -13 см). Протоны и нейтроны имеют размер около 10 -13 см и рассматриваются как два разных состояния одной частицы, называемой нуклоном. Радиус ядра можно приближённо оценить по формуле R ≈ (1.0-1.1)·10 -13 А 1/3 см, где А – число нуклонов (суммарное число протонов и нейтронов) в ядре. На рис. 1 показано как меняется плотность вещества (в единицах 10 14 г/см 3) внутри ядра никеля, состоящего из 28 протонов и 30 нейтронов, в зависимости от расстояния r (в единицах 10 -13 см) до центра ядра.
Ядерное взаимодействие (взаимодействие между нуклонами в ядре) возникает за счёт того, что нуклоны обмениваются мезонами. Это взаимодействие – проявление более фундаментального сильного взаимодействиямежду кварками, из которых состоят нуклоны и мезоны (подобным образом силы химической связи в молекулах – проявление более фундаментальных электромагнитных сил).
Мир ядер очень разнообразен. Известно около 3000 ядер, отличающихся друг от друга либо числом протонов, либо числом нейтронов, либо тем и другим. Большинство из них получено искусственным путём.
Лишь 264 ядра стабильны, т.е. не испытывают со временем никаких самопроизвольных превращений, именуемых распадами. Остальные испытывают различные формы распада – альфа-распад (испускание альфа-частицы, т.е. ядра атома гелия); бета-распад (одновременное испускание – электрона и антинейтрино или позитрона и нейтрино, а также поглощение атомарного электрона с испусканием нейтрино); гамма-распад (испускание фотона) и другие.
Различные типы ядер часто называют нуклидами. Нуклиды с одинаковым числом протонов и разным числом нейтронов называют изотопами. Нуклиды с одинаковым числом нуклонов, но разным соотношением протонов и нейтронов называются изобарами. Лёгкие ядра содержат примерно равные количества протонов и нейтронов. У тяжёлых ядер число нейтронов примерно в 1,5 раза превышает число протонов. Самое лёгкое ядро – ядро атома водорода, состоящее из одного протона. У наиболее тяжелых известных ядер (они получены искусственно) число нуклонов ≈290. Из них 116-118 протонов.
Различные комбинации количества протонов Z и нейтронов соответствуют различным атомным ядрам. Атомные ядра существуют (т.е. их время жизни t > 10 -23 c) в довольно узком диапазоне изменений чисел Z и N. При этом все атомные ядра делятся на две большие группы - стабильные и радиоактивные (нестабильные). Стабильные ядра группируются вблизи линии стабильности, которая определяется уравнением

Рис. 2. NZ- диаграмма атомных ядер.

На рис. 2 показана NZ-диаграмма атомных ядер. Черными точками показаны стабильные ядра. Область расположения стабильных ядер обычно называют долиной стабильности. С левой стороны от стабильных ядер находятся ядра, перегруженные протонами (протонноизбыточные ядра), справа – ядра, перегруженные нейтронами (нейтронноизбыточные ядра). Цветом выделены атомные ядра, обнаруженные в настоящее время. Их около 3.5 тысяч. Считается, что всего их должно быть 7 – 7.5 тысяч. Протоноизбыточные ядра (малиновый цвет) являются радиоактивными и превращаются в стабильные в основном в результате β + -распадов, протон, входящий в состав ядра при этом превращается в нейтрон. Нейтроноизбыточные ядра (голубой цвет) также являются радиоактивными и превращаются в стабильные в результате - -распадов, с превращением нейтрона ядра в протон.
Самыми тяжелыми стабильными изотопами являются изотопы свинца (Z = 82) и висмута (Z = 83). Тяжелые ядра наряду с процессами β + и β - -распада подвержены также α-распаду (желтый цвет) и спонтанному делению, которые становятся их основными каналами распада. Пунктирная линия на рис. 2 очерчивает область возможного существования атомных ядер. Линия B p = 0 (B p – энергия отделения протона) ограничивает область существования атомных ядер слева (proton drip-line). Линия B n = 0 (B n – энергия отделения нейтрона) – справа (neutron drip-line). Вне этих границ атомные ядра существовать не могут, так как они распадаются за характерное ядерное время (~10 -23 – 10 -22 c) с испусканием нуклонов.
При соединении (синтезе) двух лёгких ядер и делении тяжёлого ядра на два более лёгких осколка выделяется большая энергия. Эти два способа получения энергии – самые эффективные из всех известных. Так 1 грамм ядерного топлива эквивалентен 10 тоннам химического топлива. Синтез ядер (термоядерные реакции) является источником энергии звёзд. Неуправляемый (взрывной) синтез осуществляется при подрыве термоядерной (или, так называемой, “водородной”) бомбы. Управляемый (медленный) синтез лежит в основе перспективного разрабатываемого источника энергии – термоядерного реактора.
Неуправляемое (взрывное) деление происходит при взрыве атомной бомбы. Управляемое деление осуществляется в ядерных реакторах, являющихся источниками энергии в атомных электростанциях.
Для теоретического описания атомных ядер используется квантовая механика и различные модели.
Ядро может вести себя и как газ (квантовый газ) и как жидкость (квантовая жидкость). Холодная ядерная жидкость обладает свойствами сверхтекучести. В сильно нагретом ядре происходит распад нуклонов на составляющие их кварки. Эти кварки взаимодействуют обменом глюонами. В результате такого распада совокупность нуклонов внутри ядра превращается в новое состояние материи – кварк-глюонную плазму

Особенностью радиоактивного загрязнения в отличие от загрязнения другими поллютантами является то, что вредное воздействие на человека и объекты окружающей среды оказывает не сам радионуклид (поллютант), а излучение, источником которого он является.

Однако бывают случаи, когда радионуклид - токсичный элемент. Например, после аварии на Чернобыльской АЭС в окружающую среду с частицами ядерного топлива были выброшены плутоний 239, 242 Рu. Кроме того, что плутоний - альфа-излучатель и при попадании внутрь организма представляет значительную опасность, плутоний сам по себе - токсичный элемент.

По этой причине используют две группы количественных показателей: 1) для оценки содержания радионуклидов и 2) для оценки воздействия излучения на объект.
Активность - количественная мера содержания радионуклидов в анализируемом объекте. Активность определяется числом радиоактивных распадов атомов в единицу времени. Единицей измерения активности в системе СИ является Беккерель (Бк) равный одному распаду в секунду (1Бк = 1 расп/с). Иногда используется внесистемная единица измерения активности - Кюри (Ки); 1Ки = 3,7 ×1010 Бк.

Доза излучения - количественная мера воздействия излучения на объект.
В связи с тем, что воздействие излучения на объект можно оценивать на разных уровнях: физическом, химическом, биологическом; на уровне отдельных молекул, клеток, тканей или организмов и т. д., используют несколько видов доз: поглощенную, эффективную эквивалентную, экспозиционную.

Для оценки изменения дозы излучения во времени используют показатель «мощность дозы». Мощность дозы - это отношение дозы ко времени. Например, мощность дозы внешнего облучения от естественных источников радиации составляет на территории России 4-20 мкР/ч.

Основной норматив для человека - основной дозовый предел (1 мЗв/год) - вводится в единицах, эффективной эквивалентной дозы. Существуют нормативы и в единицах активности, уровни загрязнения земель, ВДУ, ПГП, СанПиН и др.

Строение атомного ядра.

Атом - это мельчайшая частица химического элемента, сохраняющая все его свойства. По своей структуре атом представляет сложную систему, состоящую из находящегося в центре атома положительно заряженного ядра очень малого размера (10 -13 см) и отрицательно заряженных электронов, вращающихся вокруг ядра на различных орбитах. Отрицательный заряд электронов равен положительному заряду ядра, при этом в целом оказывается электрически нейтральным.

Атомные ядра состоят из нуклонов - ядерных протонов (Z - число протонов) и ядерных нейтронов (N - число нейтронов). « Ядерные» протоны и нейтроны отличаются от частиц в свободном состоянии. Например, свободный нейтрон, в отличие от связанного в ядре, нестабилен и превращается в протон и электрон.


Число нуклонов Ам (массовое число) представляет собой сумму чисел протонов и нейтронов: Ам = Z+ N .

Протон - элементарная частица любого атома, он имеет положительный заряд, равный заряду электрона. Число электронов в оболочке атома определяется числом протонов в ядре.

Нейтрон - другой вид ядерных частиц всех элементов. Его нет лишь в ядре легкого водорода, состоящего из одного протона. Он не имеет заряда, электрически нейтрален. В атомном ядре нейтроны являются стабильными, а в свободном состоянии они неустойчивы. Число нейтронов в ядрах атомов одного и того же элемента может колебаться, поэтому число нейтронов в ядре не характеризует элемент.

Нуклоны (протоны + нейтроны) удерживаются внутри атомного ядра ядерными силами притяжения. Ядерные силы в 100 раз сильнее электромагнитных сил и поэтому удерживает внутри ядра одноименно заряженные протоны. Ядерные силы проявляются только на очень малых расстояниях (10 -13 см), они составляют потенциальную энергию связи ядра, которая при некоторых превращениях частично освобождается, переходит в кинетическую энергию.

Для атомов отличающихся составом ядра, употребляется название «нуклиды», а для радиоактивных атомов - «радионуклиды».

Нуклидами называют атомы или ядра с данным числом нуклонов и данным зарядом ядра (обозначение нуклида А Х).

Нуклиды, имеющие одинаковое число нуклонов (Ам = соnst), называются изобарами. Например, нуклиды 96 Sr, 96 Y, 96 Zr принадлежат к ряду изобаров с числом нуклонов Ам = 96.

Нуклиды, имеющие одинаковое число протонов (Z = соnst), называются изотопами. Они различаются только числом нейтронов, поэтому принадлежат одному и тому же элементу: 234 U, 235 U, 236 U, 238 U.

Изотопы - нуклиды с одинаковым числом нейтронов (N = Ам -Z = const). Нуклиды: 36 S, 37 Cl, 38 Ar, 39 K, 40 Ca принадлежат к ряду изотопов с 20 нейтронами.

Изотопы принято обозначать в виде Z Х М, где X - символ химического элемента; М - массовое число, равное сумме числа протонов и нейтронов в ядре; Z - атомный номер или заряд ядра, равный числу протонов в ядре. Поскольку каждый химический элемент имеет свой постоянный атомный номер, то его обычно опускают и ограничиваются написанием только массового числа, например: 3 Н, 14 С, 137 Сs, 90 Sr и т. д.

Атомы ядра, которые имеют одинаковые массовые числа, но разные заряды и, следственно, различные свойства называют «изобарами», так например один из изотопов фосфора имеет массовое число 32 - 15 Р 32 , такое же массовое число имеет и один из изотопов серы - 16 S 32 .

Нуклиды могут быть стабильными (если их ядра устойчивы и не распадаются) и нестабильными (если их ядра неустойчивы и подвергаются изменениям, приводящим в конечном итоге к увеличению стабильности ядра). Неустойчивые атомные ядра, способные самопроизвольно распадаться, называют радионуклидами. Явление самопроизвольного распада ядра атома, сопровождающееся излучением частиц и (или) электромагнитного излучения, называется радиоактивностью.

В результате радиоактивного распада может образоваться как стабильный, так и радиоактивный изотоп, в свою очередь, самопроизвольно распадающийся. Такие цепочки радиоактивных элементов, связанные серией ядерных превращений, называются радиоактивными семействами.

В настоящее время IUРАС (Международный союз теоретической и прикладной химии) официально дал название 109 химическим элементам. Из них только 81 имеет стабильные изотопы, наиболее тяжелым из которых является висмут (Z = 83). Для остальных 28 элементов известны только радиоактивные изотопы, причем уран (U ~ 92) является самым тяжелым элементом, встречающимся в природе. Самый большой из природных нуклидов имеет 238 нуклонов. В общей сложности в настоящее время доказано существование порядка 1700 нуклидов этих 109 элементов, причем число изотопов, известных для отдельных элементов, колеблется от 3 (для водорода) до 29 (для платины).

Ядром называется центральная часть атома, в которой сосредоточенна практически вся масса и его положительный заряд. Атомное ядро состоит из элементарных частиц – протонов и нейтронов (протонно-нейтронная модель была предложена сов. физиком Иваненко, а в последствии развита Гейзенбергом). Ядро атома характеризуется зарядом. Зарядом ядра является величина , где е – заряд протона, Z – порядковый номер химического элемента в периодической системе, равный числу протонов в ядре. Число нуклонов в ядре А=N+Z называется массовым числом, где N-число нейтронов в ядре.

Ядра с одинаковыми Z, но различными А называются изотопами. Ядра которые при одинаковом А имеют различные Z,называются изобарами. Ядро хим. элемента Х обозначается

Где Х - символ хим. элемента. Размер ядра характеризуется радиусом ядра. Эмпирическая формула для радиуса ядра , где м, может быть истолкована как пропорциональность объёма ядра числу нуклонов в нем. Плотность для ядерного вещества составляет по порядку величины и постоянна для всех ядер. Масса ядра меньше, чем сумма масс составляющих его нуклонов и этот дефект массы определяется по следующей формуле . Точно массу ядра можно определить с помощью масс-спектрометров. Нуклоны в атоме являются фермионами и имеют спин . Ядро атома имеет собственный момент импульса – спин ядра, равный ,где I – внутреннее (полное) спиновое квантовое число.

Число I принимает целочисленные или полуцелые значения и т.д. Ядерные частицы имеют собственные магнитные моменты, которыми определяется магнитный момент ядра в целом. Единицей магнитных моментов ядер служит ядерный магнетон : , где е – абсолютное значение заряда электрона, - масса протона. Между спином ядра , выраженным в , и его магнитным моментом имеется соотношение , где - ядерное гиромагнитное отношение. Распределение электрического заряда протонов по ядру в общем случае несиметрично. Мерой отклонения этого распределения от сферически-симметричного является квадрупольный электрический момент Q ядра. Если плотность заряда считается везде одинаковой, то Q определяется только формой ядра. Так для ядра, имеющего форму эллипсоида вращения, , где b – полуось эллипсоида вдоль направления спина; а – полуось в перпендикулярном направлении. Для ядра, вытянутого вдоль направления спина, b>a и Q>0. Для ядра сплющенного в этом направлении, b

Между составляющими ядро нуклонами действуют особые, специфические для ядра силы, значительно превышающие кулоновские силы отталкивания между протонами. Они называются ядерными силами. Ядерные относятся к классу так называемых сильных взаимодействий. Основные свойства ядерных сил:

1. яд. силы являются силами притяжения;

2. яд. силы являются короткодействующими;

3. яд. силам свойственна зарядовая независимость: ядерные силы, действующие между двумя протонами, или протоном и нейтроном, одинаковы по величине, т.е. ядерные силы имеют не эл. природу;

4. яд. силам свойственно насыщение, т.е. каждый нуклон в ядре взаимодействует только с ограниченным числом ближайших к нему нуклонов;

5. яд. силы зависят от взаимной ориентации спинов взаимодействующих нуклонов;

6. яд. силы не являются центральными.

Модели ядра.

1.Капельная модель ядра является первой моделью. Она основана на аналогии между поведением нуклонов в ядре и поведением молекул в капле жидкости. Так, в обоих случаях силы, действующие между составными частицами – молекулами в жидкости и нуклонами в ядре, - являются короткодействующими и им свойственно насыщение. Для капли жидкости при данных внешних условиях характерна постоянная плотность её вещества. Ядра же характеризуются практически постоянной удельной энергией связи и постоянной плотностью, не зависимо от числа нуклонов в ядре. Объём капли и объём ядра пропорциональны числу частиц. Существенное отличие ядра от капли жидкости в этой модели закл. в том, что она трактует ядро как каплю эл. Заряженной несжимаемой жидкости, подчиняющуюся законам квантовой механики. Капельная модель ядра, объяснила механизм ядерных реакций деления ядер, но не смогла объяснить повышенную устойчивость ядер, содержащих магические числа протонов и нейтронов.

2.Оболочечная модель ядра предполагает распределение нуклонов в ядре по дискретным эн. уровням, заполняемым по принципу Паули, и связывает устойчивость ядер с заполнением этих уровней. Считается, что ядра с полностью заполненными оболочками являются наиболее устойчивыми. Оболочечная модель ядра позволила объяснить спины и магнитные моменты ядер, различную устойчивость атомных ядер, а также для описания лёгких и средних ядер, а также для ядер, находящимся в основном состоянии. По мере дальнейшего накопления экспериментальных данных о свойствах атомных ядер появлялись все новые факты, не укладывающиеся в рамки описанных моделей. Так возникли обобщённая модель ядра, оптическая модель ядра и т.д.

Ядерные реакции.

Ядерными реакциями называются превращения атомных ядер, вызванные взаимодействием их друг с другом или с элементарными частицами.

Как правило, в ядерных реакциях участвуют два ядра и две частицы. Одна пара ядро-частица является исходной, другая пара - конечной.

Заряд ядра

Ядро любого атома заряжено положительно. Носителем положительного заряда является протон. Поскольку заряд протона численно равен заряду электрона $e$, то можно записать что заряд ядра равен $+Ze$ ($Z$ -- целое число, которое указывает на порядковый номер химического элемента в периодической системе химических элементов Д. И. Менделеева). Число $Z$ также определяет количество протонов в ядре и количество электронов в атоме. Поэтому его называют атомным номером ядра. Электрический заряд является одной с основных характеристик атомного ядра, от которой зависят оптические, химические и другие свойства атомов.

Масса ядра

Другой важной характеристикой ядра является его масса. Массу атомов и ядер принято выражать в атомных единицах массы (а.е.м.). за атомную единицу массы принято считать $1/12$ массы нуклида углерода $^{12}_6C$:

где $N_A=6,022\cdot 10^{23}\ моль^-1$ -- число Авогадро.

Согласно соотношению Эйнштейна $E=mc^2$, массу атомов также выражают в единицах энергии. Поскольку:

  • масса протона $m_p=1.00728\ а.е.м.=938,28\ МэВ$,
  • масса нейтрона $m_n=1.00866\ а.е.м.=939,57\ МэВ$,
  • масса электрона $m_e=5,49\cdot 10^{-4}\ а.е.м.=0,511\ МэВ$,

Как видно масса электрона пренебрежительно мала в сравнении с массой ядра, то масса ядра почти совпадает с массой атома.

Масса отличается от целых чисел. Масса ядра, выражена в а.е.м. и округлена до целого числа называется массовым числом, обозначается буквой $A$ и определяет количество нуклонов в ядре. Число нейтронов в ядре равно $N=A-Z$.

Для обозначения ядер применяется символ $^A_ZX$, где под $X$ подразумевается химический символ данного элемента. Атомные ядра с одинаковым количеством протонов но разными массовыми числами называют изотопами. В некоторых элементов число стабильных и нестабильных изотопов достигает десятков, например, уран имеет $14$ изотопов: от $^{227}_{92}U\ $до $^{240}_{92}U$.

Большинство химических элементов существующих в природе, представляют собой смесь нескольких изотопов. Именно наличие изотопов объясняет тот факт, что некоторые природные элементы имеют массу, которая отличается от целых чисел. Например, природный хлор состоит с $75\%$ $^{35}_{17}Cl$ и $24\%$ $^{37}_{17}Cl$, а его атомная масса равна $35,5$ а.е.м. в большинства атомов, кроме водорода, изотопы имеют почти одинаковые физические и химические свойства. Но за своими исключительно ядерными свойствами изотопы существенно разнятся. Одни с них могут быть стабильными, другие -- радиоактивными.

Ядра с одинаковыми массовыми числами, но разными значениями $Z$ называют изобарами, например, $^{40}_{18}Ar$, $^{40}_{20}Ca$. Ядра с одинаковым количеством нейтронов называют изотонами. Среди легких ядер встречаются так называемые «зеркальные» пары ядер. Это такие пары ядер в которых числа $Z$ и $A-Z$ меняются местами. Примерами таких ядер могут быть $^{13}_6C\ $и $^{13_7}N$ или $^3_1H$ и $^3_2He$.

Размер атомного ядра

Считая атомное ядро приблизительно сферическим, можно ввести понятия его радиуса $R$. Отметим, что в некоторых ядрах есть небольшое отклонение от симметрии в распределении электрического заряда. Кроме того, атомные ядра не статические, а динамические системы, и понятие радиуса ядра не можно представлять как радиус шара. По этой причине, за размеры ядра необходимо брать ту область, в которой проявляются ядерные силы.

При создании количественной теории рассеивания $\alpha $ -- частиц Э. Резерфорд исходил с предположений, что атомное ядро и $\alpha $ -- частица взаимодействуют по закону Кулона, т.е. что электрическое поле вокруг ядра имеет сферическую симметрию. Рассеивание $\alpha $ -- частицы происходит в полном соответствии с формулой Резерфорда:

Это имеет место для $\alpha $ -- частиц энергия которых $E$ достаточно мала. При этом частица не способна преодолеть кулоновский потенциальный барьер и в последствии не достигает области действия ядерных сил. С увеличением энергии частицы до некоторого граничного значения $E_{гр}$ $\alpha $ -- частица достигает этой границы. Тога в рассеивании $\alpha $ -- частиц наблюдается отклонение от формулы Резерфорда. Из соотношения

Опыты показывают, что радиус $R$ ядра зависит от количества нуклонов, которые входят до состава ядра. Эта зависимость может выражаться эмпирической формулой:

где $R_0$ -- постоянная, $A$ -- массовое число.

Размеры ядер определяют экспериментально по рассеиванию протонов, быстрых нейтронов или электронов высоких энергий. Существует ряд других непрямых методов определения размеров ядер. Они обоснованы на связи время жизни $\alpha $ -- радиоактивных ядер с энергией выпущенных ими $\alpha $ -- частиц; на оптических свойствах, так называемых, мезоатомов, в которых один с электронов временно захвачен мюоном; на сравнении энергии связи пары зеркальных атомов. Эти методы подтверждают эмпирическую зависимость $R=R_0A^{1/3}$, а также с помощью этих измерений установлено значение постоянной $R_0=\left(1,2-1,5\right)\cdot 10^{-15}\ м$.

Отметим также, что за единицу расстояний в атомной физике и физике элементарных частиц берут единицу измерения «ферми», который равняется ${10}^{-15}\ м$ (1 ф=${10}^{-15}\ м)$.

Радиусы атомных ядер зависят от их массового числа и находятся в промежутке от $2\cdot 10^{-15}\ м\ до\ 10^{-14}\ м$. если с формулы $R=R_0A^{1/3}$ выразить $R_0$ и записать его в виде $\left(\frac{4\pi R^3}{3A}\right)=const$, то можно увидеть что на каждый нуклон припадает приблизительно одинаковый объем. Это значит, что плотность ядерного вещества для всех ядер так же приблизительно одинакова. Выходя с существующих ведомостей о размерах атомных ядер, найдем среднее значение плотности вещества ядра:

Как видим, плотность ядерного вещества очень большая. Это обусловлено действием ядерных сил.

Энергия связи. Дефект масс ядер

При сравнении суммы масс покоя нуклонов, которые образуют ядро с массой ядра было замечено, что для всех химических элементов справедливо неравенство:

где $m_p$ -- масса протона, $m_n$ -- масса нейтрона, $m_я$ -- масса ядра. Величину $\triangle m$, что выражает разницу масс между массой нуклонов, которые образуют ядро, и массой ядра, называют дефектом массы ядра

Важные сведения о свойствах ядра можно получить не вникая в подробности взаимодействия между нуклонами ядра, на основании закона сохранения энергии и закона пропорциональности массы и энергии. По сколько в результате любого изменения массы $\triangle m$ происходит соответствующее изменение энергии $\triangle E$ ($\triangle E=\triangle mc^2$), то при образовании ядра выделяется определенное количество энергии. По закону сохранения энергии такое же количество энергии необходимо, чтоб разделить ядро на составляющие частицы, т.е. отдалить нуклоны один от одного на такие же расстояния, при которых отсутствует взаимодействие между ними. Эту энергию называют энергией связи ядра.

Если ядро имеет $Z$ протонов и массовое число $A$, то энергия связи равна:

Замечание 1

Отметим, что этой формулой не совсем удобно пользоваться, т.к. в таблицах приводиться не массы ядер, а массы, которые определяют массы нейтральных атомов. Поэтому для удобства вычислений формулу преобразуют таким образом, чтобы в нее входили массы атомов, а не ядер. С этой целью в правой части формулы добавим и отнимем массу $Z$ электронов $(m_e)$. Тогда

\c^2==\leftc^2.\]

$m_{{}^1_1H}$ -- масса атома водорода, $m_a$ -- масса атома.

В ядерной физике энергию часто выражают в мегаэлектрон-вольтах (МэВ). Если речь идет о практическом применении ядерной энергии, то ее измеряют в джоулях. В случае сравнения энергии двух ядер используют массовую единицу энергии -- соотношение между массой и энергией ($E=mc^2$). Массовая единица энергии ($le$) равняется энергии, что соответствует массе в одну а.е.м. Она равняется $931,502$ МэВ.

Рисунок 1.

Кроме энергии, важное значение имеет удельная энергия связи -- энергия связи, которая припадает на один нуклон: $w=E_{св}/A$. Эта величина меняется сравнительно медленно по сравнению со сменой массового числа $A$, имея почти постоянную величину $8.6$ МэВ в средней части периодической системы и уменьшается до ее краев.

Для примера рассчитаем дефект массы, энергию связи и удельную энергию связи ядра атома гелия.

Дефект массы

Энергия связи в МэВ: $E_{св}=\triangle m\cdot 931,502=0,030359\cdot 931,502=28,3\ МэВ$;

Удельная энергия связи: $w=\frac{E_{св}}{A}=\frac{28,3\ МэВ}{4\approx 7.1\ МэВ}.$

Делимо ли атомное ядро? И если да, то из каких частиц оно состоит? На этот вопрос пытались ответить многие физики.

В 1909 г. британский физик Эрнест Резерфорд вместе с немецким физиком Гансом Гейгером и физиком из Новой Зеландии Эрнстом Марсденом провёл свой известный эксперимент по рассеянию α-частиц, результатом которого стал вывод о том, что атом вовсе не неделимая частица. Он состоит из положительно заряженного ядра и вращающихся вокруг него электронов. Причём, несмотря на то, что размер ядра примерно в 10 000 раз меньше размера самого атома, в нём сосредоточено 99,9% массы атома.

Но что из себя представляет ядро атома? Какие частицы входят в его состав? Это сейчас мы знаем, что ядро любого элемента состоит из протонов и нейтронов , общее название которых нуклоны . А в начале ХХ века после появления планетарной, или ядерной, модели атома, это было загадкой для многих учёных. Выдвигались разные гипотезы и предлагались разные модели. Но правильный ответ на этот вопрос снова дал Резерфорд.

Открытие протона

Опыт Резерфорда

Ядро атома водорода – это атом водорода, из которого удалили его единственный электрон.

К 1913 г. были вычислены масса и заряд ядра атома водорода. Кроме того, стало известно, что масса атома любого химического элемента всегда делится без остатка на массу атома водорода. Этот факт навёл Резерфорда на мысль, что в любое ядро входят ядра атомов водорода. И ему удалось доказать это экспериментально в 1919 г.

В своём опыте Резерфорд поместил источник α-частиц в камеру, в которой был создан вакуум. Толщина фольги, закрывавшей окно камеры, была такой, что α-частицы не могли выходить наружу. За окном камеры располагался экран, на который нанесли покрытие из сернистого цинка.

Когда камеру начинали заполнять азотом, на экране фиксировались световые вспышки. Это означало, что под воздействием α-частиц из азота выбивались какие-то новые частицы, без труда проникавшие через фольгу, непроходимую для α-частиц. Оказалось, что неизвестные частицы имеют положительный заряд, равный по величине заряду электрона, а их масса равна массе ядра атома водорода. Эти частицы Резерфорд назвал протонами .

Но вскоре стало понятно, что ядра атомов состоят не только из протонов. Ведь если бы это было так, то масса атома равнялась бы сумме масс протонов в ядре, а отношение заряда ядра к массе было бы величиной постоянной. На самом деле, это справедливо только для простейшего атома водорода. В атомах других элементов всё по-другому. К примеру, в ядре атома бериллия сума масс протонов равна 4 единицам, а масса самого ядра равна 9 единицам. Значит, в этом ядре существуют и другие частицы, обладающие массой в 5 единиц, но не имеющие заряда.

Открытие нейтрона

В 1930 г. немецкий физик Вальтер Боте Боте и Ханс Беккер во время эксперимента обнаружили, что излучение, возникающее при бомбардировке атомов бериллия α-частицами, имеет огромную проникающую способность. Спустя 2 года английский физик Джеймс Чедвик, ученик Резерфорда, выяснил, что даже свинцовая пластинка толщиной 20 см, помещённая на пути этого неизвестного излучения, не ослабляет и не усиливает его. Оказалось, что и электромагнитное поле не оказывает на излучаемые частицы никакого воздействия. Это означало, что они не имеют заряда. Так была открыта ещё одна частица, входящая в состав ядра. Её назвали нейтроном . Масса нейтрона оказалась равной массе протона.

Протонно-нейтронная теория ядра

После экспериментального открытия нейтрона российский ученый Д. Д. Иваненко и немецкий физик В. Гейзенберг, независимо друг от друга предложили протонно-нейтронную теорию ядра, которая дала научное обоснование состава ядра. Согласно этой теории ядро любого химического элемента состоит из протонов и нейтронов. Их общее название - нуклоны.

Общее число нуклонов в ядре обозначают буквой A . Если число протонов в ядре обозначить буквой Z , а число нейтронов буквой N , то получим выражение:

A = Z + N

Это уравнение называется уравнением Иваненко-Гейзенберга .

Так как заряд ядра атома равен количеству протонов в нём, то Z называют также зарядовым числом . Зарядовое число, или атомный номер, совпадает с его порядковым номером в периодической системе элементов Менделеева.

В природе существуют элементы, химические свойства которых абсолютно одинаковы, а массовые числа разные. Такие элементы называются изотопами . У изотопов одинаковое количество протонов и разное количество нейтронов.

К примеру, у водорода три изотопа. Все они имеют порядковый номер, равный 1, а число нейтронов в ядре у них разное. Так, у самого простого изотопа водорода, протия, массовое число 1, в ядре 1 протон и ни одного нейтрона. Это простейший химический элемент.