Диффузия. Реферат: Тема: «Диффузия в живой и неживой природе Диффузия в твёрдых телах: примеры

О таком понятии, как диффузия, слышали абсолютно все люди. Это было одной из тем на уроках физики в 7 классе. Несмотря на то что это явление окружает нас абсолютно везде, мало кто знает о нём. Что же оно всё-таки означает? В чём заключается его физический смысл , и как можно облегчить жизнь с её помощью? Сегодня мы с вами об этом и поговорим.

Вконтакте

Диффузия в физике: определение

Это - процесс проникновения молекул одного вещества между молекулами другого вещества. Говоря простым языком, этот процесс можно назвать смешиванием. Во время этого смешивания происходит взаимное проникновение молекул вещества друг между другом . Например, при приготовлении кофе молекулы растворимого кофе проникают в молекулы воды и наоборот.

Скорость этого физического процесса зависит от следующих факторов:

  1. Температура.
  2. Агрегатное состояние вещества.
  3. Внешнее воздействие.

Чем выше температура вещества, тем быстрее движутся молекулы. Следовательно, процесс смешивания происходит быстрее при высоких температурах.

Агрегатное состояние вещества - важнейший фактор . В каждом агрегатном состоянии молекулы движутся с определённой скоростью.

Диффузия может протекать в следующих агрегатных состояниях:

  1. Жидкость.
  2. Твёрдое тело.

Скорее всего, у читателя сейчас возникнут следующие вопросы:

  1. Каковы причины возникновения диффузии?
  2. Где она протекает быстрее?
  3. Как она применяется в реальной жизни?

Ответы на них можно узнать ниже.

Причины возникновения

Абсолютно у всего в этом мире есть своя причина. И диффузия не является исключением . Физики прекрасно понимают причины её возникновения. А как донести их до обычного человека?

Наверняка каждый слышал о том, что молекулы находятся в постоянном движении. Причём это движение является беспорядочным и хаотичным, а его скорость очень большая. Благодаря этому движению и постоянному столкновению молекул происходит их взаимное проникновение.

Есть ли какие-то доказательства этого движения? Конечно! Вспомните, как быстро вы начинали чувствовать запах духов или дезодоранта? А запах еды, которую готовит ваша мама на кухне? Вспомните, как быстро готовится чай или кофе . Всего этого не могло быть, если бы не движение молекул. Делаем вывод - основная причина диффузии заключается в постоянном движении молекул.

Теперь остаётся только один вопрос - чем же обусловлено это движение? Оно обусловлено стремлением к равновесию. То есть, в веществе есть области с высокой и низкой концентрацией этих частиц. И благодаря этому стремлению они постоянно движутся из области с высокой концентрацией в низкоконцентрированную. Они постоянно сталкиваются друг с другом , и происходит взаимное проникновение.

Диффузия в газах

Процесс смешивания частиц в газах самый быстрый. Он может происходить как между однородными газами, так и между газами с разной концентрацией.

Яркие примеры из жизни:

  1. Вы чувствуете запах освежителя воздуха благодаря диффузии.
  2. Вы чувствуете запах приготовленной пищи. Заметьте, его вы начинаете чувствовать сразу, а запах освежителя через несколько секунд. Это объясняется тем, что при высокой температуре скорость движения молекул больше.
  3. Слезы, возникающие у вас при нарезании лука. Молекулы лука смешиваются с молекулами воздуха, и ваши глаза на это реагируют.

Как протекает диффузия в жидкостях

Диффузия в жидкостях протекает медленнее. Она может длиться от нескольких минут до нескольких часов.

Самый яркие примеры из жизни:

  1. Приготовление чая или кофе.
  2. Смешивание воды и марганцовки.
  3. Приготовление раствора соли или соды.

В этих случаях диффузия протекает очень быстро (до 10 минут). Однако если к процессу будет приложено внешнее воздействие, например, размешивание этих растворов ложкой, то процесс пойдёт гораздо быстрее и займёт не более одной минуты.

Диффузия при смешивании более густых жидкостей будет происходить гораздо дольше. Например, смешивание двух жидких металлов может занимать несколько часов. Конечно, можно сделать это за несколько минут, но в таком случае получится некачественный сплав .

Например, диффузия при смешивании майонеза и сметаны будет протекать очень долго. Однако, если прибегнуть к помощи внешнего воздействия, то этот процесс и минуты не займёт.

Диффузия в твёрдых телах: примеры

В твёрдых телах взаимное проникновение частиц протекает очень медленно. Этот процесс может занять несколько лет. Его длительность зависит от состава вещества и структуры его кристаллической решётки.

Опыты, доказывающие, что диффузия в твёрдых телах существует.

  1. Слипание двух пластин разных металлов. Если держать эти две пластины плотно друг к другу и под прессом, в течение пяти лети между ними будет слой, имеющий ширину 1 миллиметр. В этом небольшом слое будут находиться молекулы обоих металлов. Эти две пластины будут слиты воедино.
  2. На тонкий свинцовый цилиндр наносится очень тонкий слой золота. После чего эта конструкция помещается в печь на 10 дней. Температура воздуха в печи - 200 градусов Цельсия. После того как этот цилиндр разрезали на тонкие диски, было очень хорошо видно, что свинец проник в золото и наоборот.

Примеры диффузии в окружающем мире

Как вы уже поняли, чем тверже среда, тем меньше скорость смешивания молекул. Теперь давайте поговорим о том, где в реальной жизни можно получить практическую пользу от этого физического явления.

Процесс диффузии происходит в нашей жизни постоянно. Даже когда мы лежим на кровати, очень тонкий слой нашей кожи остаётся на поверхности простыни. А также в неё впитывается пот. Именно из-за этого постель становится грязной, и её необходимо менять.

Так, проявление этого процесса в быту может быть следующим:

  1. При намазывании масла на хлеб оно в него впитывается.
  2. При засолке огурцов соль сначала диффундирует с водой, после чего солёная вода начинает диффундировать с огурцами. В результате чего мы получаем вкуснейшую закуску. Банки необходимо закатывать. Это нужно для того, чтобы вода не испарялась. А точнее, молекулы воды не должны диффундировать с молекулами воздуха.
  3. При мытье посуды молекулы воды и чистящего средства проникают в молекулы оставшихся кусочков еды. Это помогает им отлипать от тарелки, и сделать её более чистой.

Проявление диффузии в природе:

  1. Процесс оплодотворения происходит именно благодаря этому физическому явлению. Молекулы яйцеклетки и сперматозоида диффундируют, после чего появляется зародыш.
  2. Удобрение почв. Благодаря использованию определённых химических средств или компоста почва становится более плодородной. Почему так происходит? Суть в том, что молекулы удобрения диффундируют с молекулами почвы. После чего процесс диффузии происходит между молекулами почвы и корня растения. Благодаря этому сезон будет более урожайным.
  3. Смешивание производственных отходов с воздухом сильно загрязняет его. Из-за этого в радиусе километра воздух становится очень грязным. Его молекулы диффундируют с молекулами чистого воздуха из соседних районов. Именно так ухудшается экологическая обстановка в городе.

Проявление этого процесса в промышленности:

  1. Силицирование - процесс диффузионного насыщения кремнием. Он проводится в газовой атмосфере. Насыщенный кремнием слой детали имеет не очень высокую твёрдость, но высокую коррозионную стойкость и повышенную износостойкость в морской воде, азотной, соляной в серной кислотах.
  2. Диффузия в металлах при изготовлении сплавов играет большую роль. Для получения качественного сплава необходимо производить сплавы при высоких температурах и с внешним воздействием. Это значительно ускорит процесс диффузии.

Эти процессы происходят в различных областях промышленности:

  1. Электронная.
  2. Полупроводниковая.
  3. Машиностроение.

Как вы поняли, процесс диффузии может оказывать на нашу жизнь как положительный, так и отрицательный эффект. Нужно уметь управлять своей жизнью и максимально использовать пользу от этого физического явления, а также минимизировать вред.

Теперь вы знаете, в чём сущность такого физического явления, как диффузия. Она заключается во взаимном проникновении частиц благодаря их движению. А в жизни движется абсолютно все. Если вы школьник, то после прочтения нашей статьи вы точно получите оценку 5. Успехов вам!

В статье показана роль диффузных процессов в ранах, ушитых традиционным способом и способом предложенным авторами. Теоретически обосновано улучшение диффузных процессов в ранах при лечении аппартным методом.

Проблема заживления ран различной этиологии относится к числу основных разделов медицины, не утративших своего значения и в настоящее время. Лечение этой патологии в кратчайшие сроки без гнойных осложнений возможно только при достаточном обеспечении лечебных учреждений современными эффективными ранозаживляющими препаратами.

При раневом процессе местная и общая реакция организма находится в прямой зависимости от тяжести и особенностей повреждений тканей и органов. Местные и общие реактивные процессы при регенерационных процессах находятся в прямой и обратной зависимости будучи взаимообусловленными и взаимовлияющими. В основе лечения ран лежит умение управлять течением раневого процесса. Эта проблема неизменно находится в поле зрения ученых и хирургов практиков .

Большое количество применяемых методов лечения ран относятся к фармакологической группе. В то же время было предложено боьшое количество технических устройств для лечения ран. Однако самым распространенным методом ушивания ран является циркулярный вертикальный шов.

Кожный покров человека, состоящий из коллагеновых белков, является идеальной природной мембраной, выполняющей многочисленные обменные и защитные функции. Эти процессы в основном обусловлены диффузией. Диффузия (от лат. diffusio – распространение, растекание), взаимное проникновение соприкасающихся веществ друг в друга вследствие движения частиц вещества.

Диффузия представляет собой процесс на молекулярном уровне и определяется случайным характером движения отдельных молекул. Скорость диффузии пропорциональна в связи с этим средней скорости молекул. Диффузия происходит в направлении падения концентрации вещества и ведёт к равномерному распределению вещества по всему занимаемому им объёму (к выравниванию химического потенциала вещества).

Роль диффузных процессов в патогенезе и лечении раневого процесса очень велика. Так, например, при трансплантологии кожных покровов толщина лоскутов играет огромную роль в заживлении ожоговых ран, так как она положительно влияет на диффузные процессы между трансплантантом и раневой поверхностью .

Однако, значение диффузных процессов в ране практически не изучено. Края раны являются проводящими системами, в которых в нормальных условиях должны проходить диффузные процессы. Схематически этот процесс представлен на рисунке 1.

На схематическом рисунке видно, что хирургическая рана (1), ушитая традиционными циркулярными вертикальными швами по классификации Голикова А.Н., обладает определенными недостатками. Хирургический шов (2), являющийся средством для сближения краев раны, осуществляет полную ишемизацию (5) тканей, что приводит к образованию «немых участков» для прохождения диффузных процессов, что приводит к деформации (4) вектора диффузии (3). В результате традиционно используемый хирургический шов приводит к искусственному образованию участков ткани, не участвующих в процессах регенерации. Более того, при неблагоприятных случаях данные «тканевые дефекты» являются источниками образования очагов возникновения инфекционного процесса. Потому что, в итоге, ткань, лишенная доступа питательных веществ, кислорода и т.д., некротизируется, что заканчивается образованием рубца. В противном случае некротизированные массы ткани являются благоприятной питательной средой для болезнетворных микроорганизмов.

На аппаратный метод был получен охранный документ Национального института интеллектуальной собственности Республики Казахстан №13864 от 15.08.2007г. Главным принципом действия предложенного метода является плотное смыкание краев ран друг к другу при помощи физико-механических приемов. Вдоль края раны накладывается капроновая леска достаточной длины, создающая «лигатурную дугу», которая фиксируется концами к торцам аппарата авторской конструкции.

Авторский аппарат в собранном виде имеет форму рамки, в виде четырехугольного параллелограмма, боковые стороны которого составляют стержни, а торцами являются подвижные планки, расположенные и фиксированные к стержням двумя гайками на обоих концах штырей, на подвижных планках просверлены отверстия одинакового диаметра для стержней и фиксации нитей лигатур (рис. 2).


регенерационные процессы. Эффективность аппаратного метода была доказана экспериментально и клинически.

Таким образом, теоретически предложено обоснование эффективности предложенного аппаратного метода по сравнению с традиционными способами ушивания ран. Это обусловлено увеличением давления на область раны, (вследствие особенностей конструкции устройства) приводящего к локальному усилению скорости диффузии.

Литература

  1. Голиков А.Н. Заживление гранулирующей раны, закрытой швами. – Москва: 1951. – 160 с.
  2. Waldorf H., Fewres J. Wound healing // Adv. Derm. – 1995. № 10. – P. 77–96.
  3. Абатурова Э.К., Байматов В.Н., Батыршина Г.И. Влияние биостимуляторов на раневой процесс // Морфология. – 2002. – Т. 121, №2–3. – С.6.
  4. Кочнев О.С., Измайлов Г.С. Способы ушивания ран. – Казань: 1992. – 160 с.
  5. Киселев С.И. Значение донорских ресурсов кожи в выборе рациональной хирургической тактики у больных с глубокими ожогами: Автореф.дис. … канд.мед.наук. Рязань, 1971. 17 с.

Жараларды емдеу биологиясындағы диффузия

Түйін Мақалада әдеттегі әдіспен және мақала авторларымен ұсынылып отырған аппаратты әдістің жараларды емдеудегі диффузды процесстер туралы айтылғын. Жараларда диффузды процесстердің аппаратты әдістің жақсарғаны теория жүзінде дәлелдіп көрсетілді.

DIFFUSION IN BIOLOGY Healing

Abstract The article shows the role of diffuse processes in wounds sutured in the traditional way and the method proposed by the authors. The diffuse processes in wounds have been justified theoretically.

Есиркепов М.М., Нурмашев Б.К., Муканова У.А.

Южно-Казахстанская государственная медицинская академия, г. Шымкент

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение

Актуальность работы. Диффузия - фундаментальное явление природы. Оно лежит в основе превращений вещества и энергии. Его проявления имеют место на всех уровнях организации природных систем на нашей планете, начиная с уровня элементарных частиц, атомов и молекул, и заканчивая геосферой. Оно широко используется в технике, в повседневной жизни.

Сущность диффузии - движение частиц среды, приводящее к переносу веществ и выравниванию концентраций или к установлению равновесного распределения частиц данного вида в среде. Диффузия молекул и атомов обусловлена их тепловым движением.

Диффузия является также фундаментальным процессом, лежащим в основе функционирования живых систем любого уровня организации, начиная с уровня элементарных частиц (электронная диффузия) и заканчивая биосферным уровнем (круговоротом веществ в биосфере).

Она играет огромную роль в природе, в быту человека и в технике. Диффузионные процессы могут оказывать как положительное, так и отрицательное влияние на жизнедеятельность человека и животных. Примером положительного воздействия является поддержание однородного состава атмосферного воздуха вблизи поверхности Земли. Диффузия играет важную роль в различных областях науки и техники, в процессах, происходящих в живой и неживой природе. Она оказывает влияние на течение химических реакций.

С участием диффузии или при нарушении и изменении этого процесса могут протекать отрицательные явления в природе и жизни человека, такие как обширное загрязнение окружающей среды продуктами технического прогресса человека.

Цель работы: Исследовать особенности протекания диффузии в газах, жидкостях и в твердых телах и выяснить применение диффузии человеком и проявление диффузии в природе, рассмотреть влияния диффузионных процессов на экологическое равновесие в природе и влияние человека на процессы диффузии.

Сущность диффузии

Демонстрирует диффузию в газах, разбрызгивая в углу класса дезодорант. Распространение запаха объясняется движением молекул. Это движение носит непрерывный и беспорядочный характер. Сталкиваясь с молекулами газов, входящих в состав воздуха, молекулы дезодоранта много раз меняют направление своего движения и, беспорядочно перемещаясь, разлетаются по всей комнате.

Процесс проникновения частиц (молекул, атомов, ионов) одного вещества между частицами другого вещества вследствие хаотичного движения называется диффузией (от лат. diffusio — распространение, растекание, рассеивание). Таким образом, диффузия - результат хаотичного движения всех частиц вещества, всякого механического воздействия.

Движения частиц при диффузии совершенно случайны, все направления смещения равновероятны,

Так как частицы движутся и в газах, и в жидкостях, и в твердых телах, то в этих веществах возможна диффузия. Диффузия - перенос вещества, обусловленный самопроизвольным выравниванием неоднородной концентрации атомов или молекул разного вида. Если в сосуд впустить порции различных газов, то через некоторое время все газы равномерно перемешиваются: число молекул каждого вида в единице объёма сосуда станет постоянным, концентрация выравнивается Диффузия объясняется так. Сначала между двумя телами чётко видна граница раздела двух сред (рис.1а). Затем, вследствие своего движения отдельные частицы веществ, находящихся около границы, обмениваются местами.

Граница между веществами расплывается (рис.1б). Проникнув между частицами другого вещества, частицы первого начинают обмениваться местами с частицами второго, находящимися во всё более глубоких слоях. Граница раздела веществ становится ещё более расплывчатой. Благодаря непрерывному и беспорядочному движению частиц этот процесс приводит, в конце концов, к тому, что раствор в сосуде становится однородным (рис.1в).

Рис.1. Объяснение явления диффузии.

Диффузия в природе

С помощью диффузии происходит распространение различных газообразных веществ в воздухе: например, дым костра распространяется на большие расстояния.

Результатом этого явления может быть выравнивание температуры в помещении при проветривании. Таким же образом происходит загрязнение воздуха вредными продуктами промышленного производства и выхлопными газами автомобилей. Природный горючий газ, которым мы пользуемся дома, не имеет ни цвета ни запаха. При утечке заметить его невозможно, поэтому на распределительных станциях газ смешивают с особым веществом, обладающим резким, неприятным запахом, который легко ощущается человеком.

Благодаря явлению диффузии нижний слой атмосферы - тропосфера - состоит из смеси газов: азота, кислорода, углекислого газа и паров воды. При отсутствии диффузии произошло бы расслоение под действием силы тяжести: внизу оказался бы слой тяжёлого углекислого газа, над ним - кислород, выше - азот инертные газы.

В небе мы тоже наблюдаем это явление. Рассеивающиеся облака - тоже пример диффузии и как точно об этом сказано у Ф.Тютчева: «В небе тают облака…»

В жидкостях диффузия протекает медленнее, чем в газах, но этот процесс можно ускорить, с помощью нагревания. Например, чтобы быстрее засолить огурцы, их заливают горячим рассолом. Мы знаем, что в холодном чае сахар растворится медленнее, чем в горячем.

Летом, наблюдая за муравьями, я всегда задумывалась над тем, как они в огромном для них мире, узнают дорогу домой. Оказывается, и эту загадку открывает явление диффузии. Муравьи помечают свой путь капельками пахучей жидкости

Благодаря диффузии, насекомые находят себе пищу. Бабочки, порхая меж растений, всегда находят дорогу к красивому цветку. Пчелы, обнаружив сладкий объект, штурмуют его своим роем.

А растение растет, цветет для них тоже благодаря диффузии. Ведь мы говорим, что растение дышит и выдыхает воздух, пьет воду, получает из почвы различные микродобавки.

Плотоядные животные находят своих жертв тоже благодаря диффузии. Акулы чувствуют запах крови на расстоянии нескольких километров, также как и рыбы пираньи.

Экология окружающей среды ухудшается за счёт выбросов в атмосферу, в воду химических и прочих вредных веществ, и это всё распространяется и загрязняет огромные территории. А вот деревья выделяют кислород и поглощают углекислый газ с помощью диффузии.

На принципе диффузии основано перемешивание пресной воды с соленой при впадении рек в моря. Диффузия растворов различных солей в почве способствует нормальному питанию растений.

Во всех приведенных примерах мы наблюдаем взаимное проникновение молекул веществ, т.е. диффузию. На этом процессе основаны многие физиологические процессы в организме человека и животных: такие как дыхание, всасывание и др. В общем, диффузия имеет большое значение в природе, но это явление также вредно в отношении загрязнения окружающей среды.

2.1 Диффузия в растительном мире

К.А. Тимирязев говорил: «Будем ли мы говорить о питании корня за счёт веществ, находящихся в почве, будем ли говорить о воздушном питании листьев за счет атмосферы или питании одного органа за счёт другого, соседнего, - везде для объяснения мы будем прибегать к тем же причинам: диффузия».

Действительно, в растительном мире очень велика роль диффузии. Например, большое развитие листовой кроны деревьев объясняется тем, что диффузионный обмен сквозь поверхность листьев выполняет не только функцию дыхания, но частично и питания. В настоящее время широко практикуется внекорневая подкормка плодовых деревьев путем опрыскивания их кроны.

Большую роль играют диффузные процессы в снабжении природных водоёмов и аквариумов кислородом. Кислород попадает в более глубокие слои воды в стоячих водах за счёт диффузии через их свободную поверхность. Поэтому нежелательны всякие ограничения свободной поверхности воды. Так, например, листья или ряска, покрывающие поверхность воды, могут совсем прекратить доступ кислорода к воде и привести к гибели ее обитателей. По этой же причине сосуды с узким горлом непригодны для использования в качестве аквариума.

В процессе обмена веществ, при расщеплении сложных питательных веществ или их элементов на более простые, происходит освобождение энергии, необходимой для жизнедеятельности организма.

2.2 Роль диффузии в питании растений.

Основную роль в диффузионных процессах в живых организмах играют мембраны клеток, обладающие избирательной проницаемостью. Прохождение веществ через мембрану зависит от:

Размеров молекул;

Электрического заряда;

От присутствия и числа молекул воды;

От растворимости этих частиц в жирах;

От структуры мембраны.

Существует две формы диффузии: а) диализ - это диффузия молекул растворенного вещества; б) осмос - это диффузия растворителя через полупроницаемую мембрану. В почвенных растворах содержатся минеральные соли и органические соединения. Вода из почвы попадает в растение путем осмоса через полупроницаемые мембраны корневых волосков. Концентрация воды в почве оказывается выше, чем внутри корневых волосков, поэтому происходит диффузия из зоны с большей концентрацией в зону с меньшей концентрацией. Затем концентрация воды в этих клетках становится выше чем в вышележащих - возникает корневое давление, обуславливающее восходящий ток сока по корням и стеблю, а потеря воды листьями обеспечивает дальнейшее поглощение воды.

Минеральные вещества в растение поступают: а) путем диффузии; б) иногда путем активного переноса против градиента концентрации, сопровождающееся расходом энергии. Различают также тургорное давление - это давление, оказываемое содержимым клетки на клеточную стенку. Оно почти всегда ниже осмотического давления клетки сока, т.к. снаружи находится не чистая вода, а солевой раствор. Значение тургорного давления:

Сохранение формы растительного организма;

Обеспечение роста в молодых клетках растений;

Сохранение упругости растений (демонстрация растений кактуса и алоэ);

Формообразование при отсутствии арматурной ткани (демонстрация помидора);

Применение диффузии в медицине.

Боле 30 лет назад немецкий врач Вильям Кольф применил аппарат «искусственная почка». С тех пор он применяется: для неотложной хронической помощи при острой интоксикации; для подготовки больных с хронической почечной недостаточностью к трансплантации почек; для длительного (10-15 лет) жизнеобеспечения больных с хроническим заболеванием почек.

Применение аппарата «искусственная почка» становится в большей мере терапевтической процедурой, аппарат применяется как в клинике, так и в домашних условиях. С помощью аппарата проводилась подготовка реципиента к первой в мире успешной трансплантации почки, проведенной в 1965 г. академиком Б.В. Петровским.

Аппарат представляет собой гемодиализатор, в котором кровь соприкасается через полупроницаемую мембрану с солевым раствором. Вследствие разности осмотических давлений из крови в солевой раствор сквозь мембрану проходят ионы и молекулы продуктов обмена (мочевина, мочевая кислота), а также различные токсические вещества, подлежащие удалению из организма. Аппарат представляет собой систему из плоских каналов, разделенных тонкими целлофановыми мембранами, по которым встречными потоками медленно движутся кровь и диализат - солевой раствор, обогащенный газовой смесью CO 2 + О 2 Аппарат подключается к кровеносной системе больного с помощью катетеров, введенных в полую (вход крови в диализат) и локтевую (выход) вены. Диализ продолжается 4-6 ч. Этим достигается очистка крови от азотистых шлаков при недостаточной функции почек, т.е. осуществляется регулирование химического состава крови.

Учитель биологии: Разобраться и понять формы диффузии, осмос и диализ вам поможет следующее сообщение.

Применение диффузии в технике и в повседневной жизни

Диффузия находит широкое применение в промышленности и повседневной жизни. На явлении диффузии основана диффузионная сварка металлов. Методом диффузионной сварки без применения припоев, электродов и флюсов соединяют между собой металлы, неметаллы, металлы и неметаллы, пластмассы. Детали помещают в закрытую сварочную камеру с сильным разряжением, сдавливают и нагревают до 800 градусов. При этом происходит интенсивная взаимная диффузия атомов в поверхностных слоях контактирующих материалов. Диффузионная сварка применяется в основном в электронной и полупроводниковой промышленности, точном машиностроении.

Для извлечения растворимых веществ из твердого измельченного материала применяют диффузионный аппарат. Такие аппараты распространены главным образом в свеклосахарном производстве, где их используют для получения сахарного сока из свекловичной стружки, нагреваемой вместе с водой.

Существенную роль в работе ядерных реакторов играет диффузия нейтронов, то есть распространение нейтронов в веществе, сопровождающееся многократным изменением направления и скорости их движения в результате столкновения с ядрами атомов. Диффузия нейтронов в среде аналогична диффузии атомов и молекул в газах и подчиняется тем же закономерностям.

В результате диффузии носителей в полупроводниках возникает электрический ток, Перемещение носителей заряда в полупроводниках обусловлено неоднородностью их концентрации. Для создания, например, полупроводникового диода в одну из поверхностей германия вплавляют индий. Вследствие диффузии атомов индия в глубь монокристалла германия в нем образовывается р-n - переход, по которому может идти значительный ток при минимальном сопротивлении.

На явлении диффузии основан процесс металлизации - покрытия поверхности изделия слоем металла или сплава для сообщения ей физических, химических и механических свойств, отличных от свойств металлизируемого материала. Применяется для защиты изделий от коррозии, износа, повышения контактной электрической проводимости, в декоративных целях, так, для повышения твердости и жаростойкости стальных деталей применяют цементацию. Она заключается в том, что стальные детали помещают в ящик с графитовым порошком, который устанавливают в термической печи. Атомы углерода вследствие диффузии проникают в поверхностный слой деталей. Глубина проникновения зависит от температуры и времени выдержки деталей в термической печи.

Влияние человека на протекание диффузии в природе.

К сожалению, в результате развития человеческой цивилизации оказывается негативное влияние на природу и процессы, протекающие в ней. Процесс диффузии играет большую роль в загрязнении рек, морей, океанов. Например, можно быть уверенным, что моющие средства, слитые в канализацию, например, в Одессе, окажутся у берегов Турции из-за диффузии и существующих течений. Годовой сброс производственных и бытовых стоков в мире исчисляется десятками триллионов тонн. Примером отрицательного влияния человека на процессы диффузии в природе являются крупномасштабные аварии, произошедшие в бассейнах разных водоемов. В результате этого явления нефть и продукты ее переработки растекаются по поверхности воды и, как результат, нарушаются процессы диффузии, например: кислород не поступает в толщу воды, и рыбы без кислорода погибают.

Вследствие явления диффузии воздух загрязняется отходами разных фабрик, из-за него вредные отходы жизнедеятельности человека проникают в почву, воду, а затем оказывают вредное влияние на жизнь и функционирование животных и растений. Увеличивается площадь земель, загрязненных выбросами промышленных предприятий и т.д. Свыше 2 тыс. гектаров земли занято свалками промышленных и бытовых отходов. Один из трудно решаемых в настоящее время вопросов является вопрос утилизации промышленных отходов, в том числе токсичных.

Насущной проблемой является загрязнение воздуха выхлопными газами, продуктами переработки вредных веществ, выбрасываемыми в атмосферу различными заводами. Дымовые трубы предприятий выбрасывают в атмосферу углекислый газ, оксиды азота и серы. В настоящее время общее количество эмиссии газов в атмосферу превышает 40 миллиардов тонн в год. Избыток углекислого газа в атмосфере опасен для живого мира Земли, нарушает круговорот углерода в природе, приводит к образованию кислотных дождей. Процесс диффузии играет большую роль в загрязнении рек, морей и океанов. Годовой сброс производственных и бытовых стоков в мире равен примерно 10 триллионов тонн.

В некоторых медицинских исследованиях была показана связь заболеваемости органов дыхания и верхних дыхательных путей с состоянием воздуха. Отмечается прямая зависимость между показателем уровня заболеваемости органов дыхания и объемом выбросов вредных веществ в атмосферу. Перечисленные примеры диффузии оказывают вредное влияние на различные процессы, происходящие в природе.

Загрязнение водоёмов приводит к тому, что в них исчезает жизнь, а воду, используемую для питья, приходится очищать, что очень дорого. Кроме того, в загрязненной воде происходят химические реакции с выделением тепла. Температура воды повышается, при этом снижается содержание кислорода в воде, что плохо для водных организмов. Из-за повышения температуры воды многие реки теперь зимой не замерзают. Для снижения выброса вредных газов из промышленных труб, труб тепловых электростанций устанавливают специальные фильтры. Такие фильтры установлены, например на ТЭЦ в Ленинском районе Челябинска, но установка их стоит очень дорого. Для предупреждения загрязнения водоемов необходимо следить за тем, чтобы вблизи берегов не выбрасывался мусор, пищевые отходы, навоз, различного рода химикаты.

Учитывая глобальное потепление, важно исследовать изменение скорости диффузии в зависимости от повышения температуры окружающей среды.

Экспериментальная часть.

I опыт. Наблюдение проникновения частицами одного вещества между молекулами другого вещества .

Цель : изучить, диффузию твердых веществ и сделать вывод о скорости протекания диффузии.

Приборы и материалы : желатин, перманганат калия, медный купорос, чашка Петрия, пинцет, нагревательный прибор.

:

Твердым раствором служит желатин. Для того, чтобы приготовить раствор, необходимо 1 ложку желатина опустить в холодную воду на 2часа, чтобы порошок набух, затем смесь нагреть и растворить желатин не доводя до кипения, затем разлили в чашку Петрия (рис.3). Когда желатин остыл, в середину быстрым движением внесли с помощью пинцета в один стакан кристаллик перманганата калия, в другой - медного купороса.И сейчас мы можем наблюдать результат диффузии.

Здесь мы пронаблюдали проникновение частиц марганцовки и медного купороса между молекулами желатина. Через 24 часа, наблюдали, что диффузия перманганата калия не происходит (рис. 4), так как перманганат калия является сильным окислителем.

Таким образом, диффузия в твердых телах протекает более медленно. Если в окружающую среду попадают, сильные окислители, то они приводят её к разрушению.

IIопыт. Наблюдение растворения кусочков гуаши в воде, при неизменной температуре (при t = 22°С)

Взяли кусочек гуаши оранжевого цвета и сосуд с чистой водой при температуре 22 °С. Положили в сосуд кусочек гуаши (рис.1) и начали наблюдать за происходящим. Через10 минут вода в сосуде начинает окрашиваться в цвет гуаши (твердого тела) (рис.2). Вода является хорошим растворителем. Под действием молекул воды происходит разрушение связей между молекулами твердых веществ гуаши. С момента начала опыта прошло 25 минут. Цвет воды становится более интенсивным (рис.3). Молекулы воды проникают между молекулами гуаши, нарушая силы притяжения. С начала эксперимента прошло 45 минут (рис.4). Одновременно с силами притяжения между молекулами начинают действовать силы отталкивания и, как следствие, происходит разрушение кристаллической решетки твердого вещества (гуаши). Процесс растворения гуаши закончился. Время прохождения эксперимента 2 часа 50 минут. Вода полностью окрасилась в цвет гуаши.

Таким образом, явление диффузии это длительный процесс, в результате которого происходит растворение твердых тел.

Ш опыт. Изучение зависимости скорости протекания диффузии от температуры и проникновение в продукты питания.

Цель : изучить, как температура влияет на скорость протекания диффузии.

Приборы и материалы : термометры - 2 шт, часы - 1 шт, стакан - 1шт, йод, картофель, магнитная мешалка.

Описание опыта и полученные результаты : взяли стакан поместили в него йод и на закрыли стакан разрезанным на половину картофелем при t=22 °С. Через 15 мин от начала эксперимента процесс диффузии не активный. Начали процесс нагревания через 4 мин. Пошел процесс диффузии,через 1 мин,видим, проникновение йода в картофель, через 2 мин.

Из этого опыта можно сделать вывод о том, что на скорость протекания диффузии влияет температура: чем больше температура, тем выше скорость протекания диффузии, что отрицательно влияет на продукты питания.

Таким образом, воздух загрязняется отходами разных фабрик, выхлопными газами автомобилей проникают в продукты питания, а затем оказывают вредное влияние на жизнь и функционирование человека, животных и растений.

IV опыт. Изучение зависимости скорости протекания диффузии газообразных веществ в воду при постоянной температуры

Цель : изучитьскорости протекания диффузии газообразных веществ в воду при постоянной температуры и сделать вывод о скорости протекания диффузии.

Приборы и материалы : термометры - 1 шт, часы - 1 шт, колба - 1 шт, вода, йод.

Описание опыта и полученные результаты : в колбу была налита вода одинаковой массы и одинаковой температуры (22 °С), затем в другую колбу была налит растительное масло (5 мл). Растительное масло в нашем опыте имитировало нефть. Колбы закрыли скотчем с приклееным к нему йодом. Наблюдение сняли через 45 минут .

Вода, покрытая пленкой растительного масла, окрасилась очень слабо, то можно судить о том, что и молекулам кислорода труднее проникнуть в воду: рыбы и другие водные обитатели испытывают недостаток кислорода и могут даже погибнуть.

Вывод : наличие различных веществ на поверхности воды нарушает процессы диффузии и может привести к нежелательным экологическим последствиям.

Заключение

Мы видим, как велико значение диффузии в неживой природе, а существование живых организмов было бы невозможно, если бы не было этого явления. К сожалению, приходится бороться с отрицательным проявлением этого явления, но положительных факторов намного больше и поэтому мы говорим об огромном значении диффузии в природе.

Природа широко использует возможности, заложенные в процессе диффузионного проникновения, играет важнейшую роль в поглощении питания и насыщении кислородом крови. В пламени Солнца, в жизни и смерти далёких звезд, в воздухе, которым мы дышим, всюду мы видим проявление всемогущей и универсальной диффузии.

Таким образом, диффузия имеет большое значение в процессах жизнедеятельности человека, животных и растений. Благодаря диффузии кислород из легких пpoникaeт в кровь человека, а из крови - в ткани. Но, к сожалению, люди в результате своей деятельности часто оказывают негативное влияние на естественные процессы в природе.

Изучая диффузию, ее роль в экологическом равновесии природы и факторы, влияющие на ее протекание в природе, я пришла к выводу, что надо привлекать внимание общественности к проблемам окружающей среды.

Литература

Алексеев С.В., Груздева М.В., Муравьёв А.Г., Гущина Э.В. Практикум по экологии. М. АО МДС, 1996 г.

Ильченко В.Р. Перекрески физики, химии и биологии.М: «Просвещение», 1986 г.

Кириллова И.Г.. Книга для чтения по физике. М. «Просвешение», 1986 г

Перышкин А.В.. Учебник по физике 7 класс. М. «Просвещение», 2005 г

Прохоров А.М. Физический энциклопедический словарь. 1995 г.

Рыженков А.П. Физика. Человек. Окружающая среда. М: Просвещение,1996

Чуянов В.А. Энциклопедический словарь юного физика. 1999 г.

Шахмаев Н.М.и др. Физика 7.М.:Мнемозина,2007.

Энциклопедия для детей.Т.19. Экология: В 33 т./ Гл. ред. Володин В. А. - М.: Аванта +, 2004 - 448 с.

В школьной программе в курсе физики (приблизительно в седьмом классе) школьники узнают, что диффузия - это процесс, который представляет собой взаимное проникновение частиц одного вещества между частицами другого вещества, в результате чего происходит выравнивание концентраций во всем занимаемом объеме. Это достаточно сложное для понимания определение. Чтобы разобраться, что такое простая диффузия, закон диффузии, ее уравнение, необходимо подробно изучить материалы по этим вопросам. Однако если человеку достаточно общего представления, то приведенные ниже данные помогут получить элементарные знания.

Физическое явление - что это

В связи с тем, что многие люди путают или же вовсе не знают, что такое физическое явление и чем оно отличается от химического, а также к какому виду явлений относится диффузия, необходимо разобраться, что же такое физическое явление. Итак, как всем известно, физика является самостоятельной наукой, относящейся к области естествознания, которая занимается изучением общих природных законов о структуре и движении материи, а также изучает саму материю. Соответственно, физическое явление - это такое явление, в результате которого не образуется новых веществ, а лишь происходит изменение строения вещества. Отличие физического явления от химического заключается как раз в том, что в результате не получается новых веществ. Таким образом, диффузия - это физическое явление.

Определение термина диффузия

Как известно, формулировок того или иного понятия может быть много, однако общий смысл не должен изменяться. И явление диффузии не является исключением. Обобщенное определение имеет следующий вид: диффузия - это физическое явление, которое представляет собой взаимное проникновение частиц (молекул, атомов) двух и более веществ до равномерного распределения по всему занимаемому этими веществами объему. В результате диффузии не образуется новых веществ, поэтому она и является именно физическим явлением. Простой называют диффузию, в результате которой происходит перемещение частиц из области наибольшей концентрации в область меньшей концентрацией, которое обусловлено тепловым (хаотичным, броуновским) движением частиц. Иными словами, диффузия представляет собой процесс перемешивания частиц разных веществ, причем частицы при этом распределяются равномерно по всему объему. Это очень упрощенное определение, зато наиболее понятное.

Виды диффузии

Диффузию можно зафиксировать как при наблюдении за газообразными и жидкими веществами, так и за твердыми. Поэтому она включает несколько видов:

  • Квантовая диффузия - это процесс диффузии частиц или точечных дефектов (локальных нарушений кристаллической решетки вещества), который осуществляется в твердых телах. Локальные нарушения - это нарушение в определенной точке кристаллической решетки.

  • Коллоидная - диффузия, происходящая во всем объеме коллоидной системы. Коллоидная система представляет собой среду, в которой распределены частицы, пузырьки, капли другой, отличающейся по агрегатному состоянию и составу от первой, среды. Такие системы, а также протекающие в них процессы, подробно изучаются в курсе коллоидной химии.
  • Конвективная - перенос микрочастиц одного вещества макрочастицами среды. Особый раздел физики, называемый гидродинамикой, занимается изучением движения сплошных сред. Оттуда можно почерпнуть знания о состояниях потока.
  • Турбулентная диффузия - это процесс переноса одного вещества в другом, обусловленный турбулентным движением второго вещества (характерна для газов и жидкостей).

Подтверждается высказывание, что диффузия может протекать как в газах и жидкостях, так и в твердых телах.

Что такое закон Фика?

Немецким ученым, физиком Фиком, был выведен закон, показывающий зависимость плотности потока частиц через единичную площадку от изменения концентрации вещества на единицу длины. Этот закон и является законом диффузии. Закон можно сформулировать следующим образом: поток частиц, который направлен по оси, пропорционален производной от числа частиц по переменной, откладываемой вдоль той оси, относительно которой определяется направление потока частиц. Иными словами, движущийся в направлении оси поток частиц пропорционален производной от числа частиц по переменной, которая откладывается вдоль той же оси, что и поток. Закон Фика позволяет описать процесс переноса вещества во времени и пространстве.

Уравнение диффузии

Когда в веществе присутствуют потоки, происходит перераспределение самого вещества в пространстве. В связи с этим существует несколько уравнений, которые описывают этот процесс перераспределения с макроскопической точки зрения. Уравнение диффузии является дифференциальным. Оно вытекает из общего уравнения переноса вещества, которое также называют уравнением непрерывности. При наличии диффузии используется закон Фика, который описан выше. Уравнение имеет следующий вид:

dn/dt=(d/dx)*(D*(dn/dx)+q.

Диффузионные методы

Метод диффузии, точнее метод ее осуществления в твердых материалах, широко используется в последнее время. Это связано с преимуществами метода, одним из которых является простота используемого оборудования и самого процесса. Сущность метода диффузии из твердых источников заключается в нанесении легированных одним или несколькими элементами пленок на полупроводники. Существует еще несколько методов осуществления диффузии, помимо метода твердых источников:

  • в замкнутом объеме (ампульный способ). Минимальная токсичность является преимуществом метода, однако его дороговизна, обусловленная одноразовостью ампулы, является существенным недостатком;
  • в незамкнутом объеме (термическая диффузия). Исключаются возможности использования многих элементов из-за высоких температур, а также боковая диффузия являются большими недостатками данного метода;
  • в частично-замкнутом объеме (бокс-метод). Это промежуточный метод между двумя описанными выше.

Для того, чтобы больше узнать о методах и особенностях проведения диффузии, необходимо изучить дополнительную литературу, посвященную конкретно этим вопросам.

МОУ Заозёрная СОШ с углубленным изучением отдельных предметов №16

Тема: «Диффузия в живой и неживой природе».

Выполнил:

ученик 8 А класса Зябрев Кирилл.

Учитель физики: Завьялова Г.М.

Учитель биологии: Зябрева В.Ф.

Томск – 2008

I. Введение. ………………………………………………………… 3

II. Диффузия в живой и неживой природе.

1. История открытия явления. …………………………………. 4

2. Диффузия, её виды. ………………………………………….. 6

3. От чего зависит скорость диффузии? ……………………….. 7

4. Диффузия в неживой природе. ……………………………... 8

5. Диффузия в живой природе. ………………………………… 9

6. Использование явлений диффузии. …………………………. 16

7. Проектирование отдельных явлений диффузии. …………… 17

III. Заключение. …………………………………………………... 20

IV. Используемая литература. …………………………………. . 21

I. Введение.

Как много удивительного и интересного происходит вокруг нас. Светят на ночном небе далёкие звёзды, горит в окне свеча, ветер разносит аромат цветущей черёмухи, тебя провожает взглядом стареющая бабушка…. Многое хочется узнать, попытаться объяснить самостоятельно. Ведь многие природные явления связаны с процессами диффузии, о которой мы говорили недавно в школе. Но говорили так мало!

Цели работы :

1. Расширить и углубить знания о диффузии.

2. Смоделировать отдельные диффузионные процессы.

3. Создать дополнительный материал в компьютерном исполнении для использования на уроках физики и биологии.

Задачи:

1. Найти необходимый материал в литературе, Интернет-сети, изучить и проанализировать его.

2. Выяснить, где в живой и неживой природе (физике и биологии) встречаются явления диффузии, какое значение они имеют, где применяются человеком.

3. Описать и спроектировать наиболее интересные опыты по данному явлению.

4. Создать анимационные модели некоторых диффузионных процессов.

Методы: анализ и синтез литературы, проектирование, моделирование.

Моя работа состоит из трёх частей; основная часть – из 7 глав. Мной были изучены и обработаны материалы 13 литературных источников, среди которых учебная, справочная, научная литература и Интернет-сайты, а также подготовлена презентация, сделанная в редакторе Power Point.

II. Диффузия в живой и неживой природе.

II .1. История открытия явления диффузии.

При наблюдении в микроскопе взвеси цветочной пыльцы в воде Роберт Броун наблюдал хаотичное движение частиц, возникающее «не от движения жидкости и не от ее испарения». Видимые только под микроскопом взвешенные частицы размером 1 мкм и менее совершали неупорядоченные независимые движения, описывая сложные зигзагообразные траектории. Броуновское движение не ослабевает со временем и не зависит от химических свойств среды; его интенсивность увеличивается с ростом температуры среды и с уменьшением ее вязкости и размеров частиц. Даже качественно объяснить причины броуновского движения удалось только через 50 лет, когда причину броуновского движения стали связывать с ударами молекул жидкости о поверхность взвешенной в ней частицы.

Первая количественная теория броуновского движения была дана А. Эйнштейном и М. Смолуховским в 1905-06 гг. на основе молекулярно-кинетической теории. Было показано, что случайные блуждания броуновских частиц связаны с их участием в тепловом движении наравне с молекулами той среды, в которой они взвешены. Частицы обладают в среднем такой же кинетической энергией, но из-за большей массы имеют меньшую скорость. Теория броуновского движения объясняет случайные движения частицы действием случайных сил со стороны молекул и сил трения. Согласно этой теории, молекулы жидкости или газа находятся в постоянном тепловом движении, причем импульсы различных молекул не одинаковы по величине и направлению. Если поверхность частицы, помещенной в такую среду, мала, как это имеет место для броуновской частицы, то удары, испытываемые частицей со стороны окружающих ее молекул, не будут точно компенсироваться. Поэтому в результате «бомбардировки» молекулами броуновская частица приходит в беспорядочное движение, меняя величину и направление своей скорости примерно 1014 раз в сек. Из этой теории следовало, что, измерив смещение частицы за определенное время и зная ее радиус и вязкость жидкости можно вычислить число Авогадро.

Выводы теории броуновского движения были подтверждены измерениями Ж. Перрена и Т. Сведберга в 1906 г. На основе этих соотношений были экспериментально определены постоянная Больцмана и постоянная Авогадро. (Постоянная Авогадро обозначается NА, число молекул или атомов в 1 моле вещества, NА=6,022.1023 моль-1; название в честь А. Авогадро.

Постоянная Больцмана, физическая постоянная k , равная отношению универсальной газовой постоянной R к числу Авогадро N A: k = R / N A = 1,3807.10-23 Дж/К. Названа по имени Л. Больцмана.)

При наблюдении броуновского движения фиксируется положение частицы через равные промежутки времени. Чем короче промежутки времени, тем более изломанной будет выглядеть траектория движения частицы.

Закономерности броуновского движения служат наглядным подтверждением фундаментальных положений молекулярно-кинетической теории. Было окончательно установлено, что тепловая форма движения материи обусловлена хаотическим движением атомов или молекул, из которых состоят макроскопические тела.

Теория броуновского движения сыграла важную роль в обосновании статистической механики, на ней основана кинетическая теория коагуляции (перемешивания) водных растворов. Помимо этого, она имеет и практическое значение в метрологии, так как броуновское движение рассматривают как основной фактор, ограничивающий точность измерительных приборов. Например, предел точности показаний зеркального гальванометра определяется дрожанием зеркальца, подобно броуновской частице бомбардируемого молекулами воздуха. Законами броуновского движения определяется случайное движение электронов, вызывающее шумы в электрических цепях. Диэлектрические потери в диэлектриках объясняются случайными движениями молекул-диполей, составляющих диэлектрик. Случайные движения ионов в растворах электролитов увеличивают их электрическое сопротивление.

Траектории броуновских частиц (схема опыта Перрена); точками отмечены положения частиц через одинаковые промежутки времени .

Таким образом, ДИФФУЗИЯ, ИЛИ БРОУНОВСКОЕ ДВИЖЕНИЕ – это беспорядочное движение мельчайших частиц, взвешенных в жидкости или газе, происходящее под действием ударов молекул окружающей среды; открыто

Р. Броуном в 1827 г.

II. 2. Диффузия, её виды.

Различают диффузию и самодиффузию.

Диффузией называется самопроизвольное проникновение молекул одного вещества в промежутки между молекулами другого вещества . При этом происходит перемешивание частиц. Диффузия наблюдается для газов, жидкостей и твердых тел. Например, капелька чернил перемешивается в стакане воды. Или запах одеколона распространяется по всему помещению.

Диффузия, как и самодиффузия, существует, пока есть градиент плотности вещества. Если плотность какого-либо одного и того же вещества неодинакова в разных частях объема, то наблюдается явление самодиффузии. Самодиффузией называется процесс выравнивания плотности (или пропорциональной ей концентрации) одного и того же вещества . Диффузия и самодиффузия происходят благодаря тепловому движению молекул, которое при неравновесных состояниях создает потоки вещества.

Плотностью потока массы называется масса вещества (dm ), диффундирующего в единицу времени через единичную площадку (dS пл ), перпендикулярную оси x :

(1.1)

Явление диффузии подчиняется закону Фика

(1.2)

где - модуль градиента плотности, который определяет скорость изменения плотности в направлении оси х ;

D - коэффициент диффузии, который рассчитывается из молекулярно-кинетической теории по формуле

(1.3)

где - средняя скорость теплового движения молекул;

Средняя длина свободного пробега молекул.

Минус показывает, что перенос массы происходит в направлении убывания плотности.

Уравнение (1.2) называется уравнением диффузии или законом Фика .

II. 3. Скорость диффузии.

При движении частицы в веществе, она постоянно сталкивается с его молекулами. Это одна из причин, почему в обычных условиях диффузия идёт медленнее обычного движения. От чего же зависит скорость диффузии?

Во-первых, от среднего расстояния между столкновениями частиц, т.е. длины свободного пробега. Чем больше эта длина, тем быстрее частица проникает в вещество.

Во-вторых, на скорость влияет давление. Чем плотнее упаковка частиц в веществе, тем труднее частице-пришельцу проникнуть в такую упаковку.

В-третьих, большую роль оказывает на скорость диффузии молекулярная масса вещества. Чем крупнее мишень, тем вероятнее попадание, а после столкновения скорость всегда замедляется.

И, в-четвёртых, температура. С ростом температуры колебания частиц увеличиваются, растёт скорость молекул. Однако, скорость диффузии в тысячу раз медленнее скорости свободного движения.

Все виды диффузии подчиняются одинаковым законам, описываются посредством коэффициента диффузии D, который является скалярной величиной и определяется из первого закона Фика.

При одномерной диффузии ,

где J - плотность потока атомов или дефектов вещества,
D - коэффициент диффузии,
N - концентрация атомов или дефектов вещества.

Диффузия представляет собой процесс на молекулярном уровне и определяется случайным характером движения отдельных молекул. Скорость диффузии пропорциональна в связи с этим средней скорости молекул. В случае газов средняя скорость малых молекул больше, а именно она обратно пропорциональна квадратному корню из массы молекулы и растёт с повышением температуры. Диффузионные процессы в твёрдых телах при высоких температурах часто находят практическое применение. Например, в определённых типах электронно-лучевых трубок (ЭЛТ) применяется металлический торий, продиффундировавший через металлический вольфрам при 2000 ºC.

Если в смеси газов одна молекула в четыре раза тяжелее другой, то такая молекула передвигается в два раза медленнее по сравнению с её движением в чистом газе. Соответственно, скорость диффузии её также ниже. Эта разница в скорости диффузии лёгких и тяжёлых молекул применяется, чтобы разделять вещества с различными молекулярными весами. В качестве примера можно привести разделение изотопов. Если газ, содержащий два изотопа, пропускать через пористую мембрану, более лёгкие изотопы проникают через мембрану быстрее, чем тяжёлые. Для лучшего разделения процесс производится в несколько этапов. Этот процесс широко применялся для разделения изотопов урана (отделение делящегося под нейтронным облучением 235U от основной массы 238U). Поскольку такой способ разделения требует больших энергетических затрат, были развиты другие, более экономичные способы разделения. Например, широко развито применение термодиффузии в газовой среде. Газ, содержащий смесь изотопов, помещается в камеру, в которой поддерживается пространственный перепад (градиент) температур. При этом тяжёлые изотопы со временем концентрируются в холодной области.

Вывод. На диффузные изменения влияют:

· молекулярная масса вещества (чем выше молекулярная масса, тем меньше скорость);

· среднее расстояние между столкновениями частиц (чем больше длина пробега, тем больше скорость);

· давление (чем больше упаковка частиц, тем труднее её пробить),

· температура (с повышением температуры повышается скорость).

II.4. Диффузия в неживой природе.

Знаете ли вы, что вся наша жизнь построена на странном парадоксе природы? Всем известно, что воздух, которым мы дышим, состоит из газов разной плотности: азота N 2 , кислорода О 2 , углекислого газа СО 2 и незначительного количества других примесей. И эти газы должны быть расположены слоями, соответственно силе тяжести: самый тяжёлый, СО 2 ,- у самой поверхности земли, над ним – О 2 , ещё выше - N 2 . Но этого не происходит. Нас окружает однородная смесь газов. Почему не гаснет пламя? Ведь кислород, окружающий его, быстро выгорает? Тут, как и в первом случае, действует механизм выравнивания. Диффузия препятствует нарушению равновесия в природе!

Почему море солёное? Мы знаем, это реки пробиваются сквозь толщу горных пород, минералов и вымывают соли в море. Как перемешивание соли с водой происходит? Это можно объяснить это с помощью простого опыта:

ОПИСАНИЕ ОПЫТА: В стеклянный сосуд наливаем водный раствор медного купороса. Поверх раствора осторожно наливаем чистую воду. Наблюдаем границу между жидкостями.

Вопрос: Что будет происходить с этими жидкостями с течением времени, и что мы будем наблюдать?

С течением времени граница между соприкасающимися жидкостями начнёт размываться. Сосуд с жидкостями можно поставить в шкаф и изо дня в день наблюдать, как происходит самопроизвольное перемешивание жидкостей. В конце концов, в сосуде образуется однородная жидкость бледно-голубого цвета, почти бесцветная на свету.

Частицы медного купороса тяжелее воды, но благодаря диффузии они медленно поднимаются вверх. Причина в строении жидкости. Частицы жидкости упакованы в компактные группы – псевдоядра. Они отделены друг от друга пустотами – дырами. Ядра не стабильны, их частицы недолго находятся в равновесии. Стоит частице сообщить энергию, как частица отрывается от ядра и проваливается в пустоты. Оттуда она легко перескакивает к другому ядру и т.д.

Молекулы инородного вещества начинают своё путешествие по жидкости с дыр. На пути они сталкиваются с ядрами, выбивают из них частицы, встают на их место. Перебираясь с одного свободного места на другое, они медленно перемешиваются с частицами жидкости. Мы уже знаем, что скорость диффузии мала. Поэтому в обычных условиях данный опыт проходил18 дней, при подогреве – 2-3 минуты.

Вывод: В пламени Солнца, жизни и смерти далёких светящихся звёзд, в воздухе, которым мы дышим, изменении погоды, практически во всех физических явлениях мы видим проявление всемогущей диффузии!

II.5. Диффузия в живой природе.

Процессы диффузии хорошо изучены в настоящее время, установлены их физические и химические закономерности, и они вполне применимы к перемещению молекул в живом организме. Диффузия в живых организмах неразрывно связана с плазматической мембраной клетки. Поэтому необходимо выяснить, как она устроена, и как особенности её строения связаны с транспортом веществ в клетке.

Плазматическая мембрана (плазмалемма, клеточная мембрана), поверхностная, периферическая структура, окружающая протоплазму растительных и животных клеток, служит не только механическим барьером, но, главное, ограничивает свободный двусторонний поток в клетку и из нее низко- и высокомолекулярных веществ. Более того, плазмалемма выступает как структура, «узнающая» различные химические вещества и регулирующая избирательный транспорт этих веществ в клетку

Внешняя поверхность плазматической мембраны покрыта рыхлым волокнистым слоем вещества толщиной 3-4 нм - гликокаликсом. Он состоит из ветвящихся цепей сложных углеводов мембранных интегральных белков, между которыми могут располагаться выделенные клеткой соединения белков с сахарами и белков с жирами. Тут же обнаруживаются некоторые клеточные ферменты, участвующие во внеклеточном расщеплении веществ (внеклеточное пищеварение, например, в эпителии кишечника).

Так как внутренняя часть липидного слоя гидрофобна, он представляет собой практически непроницаемый барьер для большинства полярных молекул. Вследствие наличия этого барьера, предотвращается утечка содержимого клеток, однако из-за этого клетка была вынуждена создать специальные механизмы для транспорта растворимых в воде веществ через мембрану.

Плазматическая мембрана, как и другие липопротеидные мембраны клетки, является полупроницаемой. Максимальной проникающей способностью обладает вода и растворенные в ней газы. Транспорт ионов может проходить по градиенту концентраций, т. е. пассивно, без затрат энергии. В этом случае некоторые мембранные транспортные белки образуют молекулярные комплексы, каналы, через которые ионы проходят сквозь мембрану за счет простой диффузии. В других случаях специальные мембранные белки-переносчики избирательно связываются с тем или иным ионом и переносят его через мембрану. Такой тип переноса называется активным транспортом и осуществляется с помощью белковых ионных насосов. Например, затрачивая 1 молекулу АТФ, система К-Nа насоса откачивает за один цикл из клетки 3 иона Nа и закачивает 2 иона К против градиента концентрации. В сочетании с активным транспортом ионов через плазмалемму проникают различные сахара, нуклеотиды и аминокислоты. Макромолекулы, такие как, например, белки, через мембрану не проходят. Они, а также более крупные частицы вещества транспортируются внутрь клетки посредством эндоцитоза. При эндоцитозе определенный участок плазмалеммы захватывает, обволакивает внеклеточный материал, заключает его в мембранную вакуоль. Эта вакуоль - эндосома - сливается в цитоплазме с первичной лизосомой и происходит переваривание захваченного материала. Эндоцитоз формально разделяют на фагоцитоз (поглощение клеткой крупных частиц) и пиноцитоз (поглощение растворов). Плазматическая мембрана принимает участие и в выведении веществ из клетки с помощью экзоцитоза - процесса, обратного эндоцитозу.

Особенно важна для живых организмов диффузия ионов в водных растворах. Не менее важна роль диффузии в дыхании, фотосинтезе, транспирации растений; в переносе кислорода воздуха через стенки альвеол легких и попадания его в кровь человека и животных. Диффузия молекулярных ионов через мембраны осуществляется с помощью электрического потенциала внутри клетки. Обладая избирательной проницаемостью, мембраны играют роль таможни при перемещении товаров через границу: одни вещества пропускают, другие - задерживают, третьи - вообще «выдворяют» из клетки. Роль мембран в жизни клеток очень велика. Гибнущая клетка теряет контроль над возможностью регулировать концентрацию веществ через мембрану. Первым признаком умирания клетки являются начинающиеся изменения в проницаемости и сбое в работе ее наружной мембраны.

Помимо обычного транспорта - кинетического процесса переноса частиц вещества под действием градиентов электрического или химического потенциала, температуры или давления - в клеточных процессах имеет место и активный транспорт - движение молекул и ионов против градиента концентрации веществ. Такой механизм диффузии назвали осмосом. (Впервые осмос наблюдал А. Нолле в 1748 году, однако исследование этого явления было начато спустя столетие.) Этот процесс осуществляется за счет разного осмотического давления в водном растворе по разные стороны биологической мембраны Вода часто свободно проходит путем осмоса через мембрану, но эта мембрана может быть непроницаема для веществ, растворенных в воде. Любопытно, что вода течет против диффузии этого вещества, но подчиняясь общему закону градиента концентрации (в данном случае воды).

Поэтому вода стремится из более разбавленного раствора, где ее концентрация выше, в более концентрированный раствор вещества, в котором концентрация воды ниже. Не имея возможности непосредственно всасывать и откачивать воду, клетка осуществляет это с помощью осмоса, изменяя концентрацию находящихся в ней растворенных веществ. Осмос выравнивает концентрацию раствора по обе стороны мембраны. От осмотического давления растворов веществ по обе стороны клеточной оболочки и упругости клеточной оболочки зависит напряжённое состояние клеточной оболочки, которое называют тургорным давлением (тургор – от лат. turgere - быть набухшим, наполненным). Обычно упругость оболочек клеток животных (исключая некоторых кишечнополостных) невелика, они лишены высокого тургорного давления и сохраняют целостность только в изотонических растворах или мало отличающихся от изотонических (разница между давлением внутренним и давлением внешним меньше 0,5-1,0 ам). У живых растительных клеток давление внутреннее всегда больше давления внешнего, однако, разрыва клеточной оболочки у них не происходит из-за наличия целлюлозной клеточной стенки. Разница между внутренним и внешним давлениями у растений (например, у растений галофитов – любящих соль, грибов) достигает 50-100 ам. Но даже при этом запас прочности растительной клетки составляет 60-70%. У большинства растений относительное удлинение клеточной оболочки вследствие тургора не превышает 5- 10%, а тургорное давление лежит в пределах 5-10 ам. Благодаря тургору ткани растений обладают упругостью и конструктивной прочностью. (Опыты №3, №4 подтверждают это). Все процессы автолиза (самоуничтожения), увядания и старения сопровождаются падением тургорного давления.

Рассматривая диффузию в живой природе, нельзя не упомянуть о всасывании. Всасывание - процесс поступления различных веществ из окружающей среды через клеточные мембраны в клетки, и через них - во внутреннюю среду организма. У растений это процесс поглощения воды с растворенными в ней веществами корнями, листьями путем осмоса и диффузии; у беспозвоночных - из окружающей среды или полостной жидкости. У примитивных организмов всасывание осуществляется с помощью пино- и фагоцитоза. У позвоночных всасывание может происходить как из полостных органов - легких, матки, мочевого пузыря, так и с поверхности кожи, с раневой поверхности и др. Кожей всасываются летучие газы, пары.

Наибольшее физиологическое значение имеет всасывание в желудочно-кишечном тракте, которое происходит главным образом в тонком кишечнике. Для эффективного переноса веществ особое значение имеет большая площадь поверхности кишечника и постоянно высокий кровоток в слизистой оболочке, за счет которого поддерживается высокий градиент концентраций всасываемых соединений. У человека брыжеечный кровоток во время приема пищи около 400 мл/мин, а в разгар пищеварения - до 750 мл/мин, причем основную долю (до 80%) составляет кровоток в слизистой оболочке пищеварительных органов. Благодаря наличию структур, увеличивающих поверхность слизистой оболочки - круговых складок, ворсинок, микроворсинок, общая площадь всасывающей поверхности кишки человека достигает 200 м 2 .

Вода и растворы солей могут диффундировать по обе стороны кишечной стенки, как в тонком, так и в толстом кишечнике. Всасывание их происходит в основном в верхних отделах тонкого кишечника. Большое значение имеет в тонком кишечнике транспорт ионов Na+, за счет которых в основном создается электрический и осмотический градиенты. Всасывание ионов Na+ происходит как за счет активного, так и пассивного механизмов.

Если бы у клетки не существовало систем регуляции осмотического давления, то концентрация растворенных веществ внутри нее оказалась бы больше их внешних концентраций. Тогда концентрация воды в клетке была бы меньшей, чем ее концентрация снаружи. Вследствие этого, происходил бы постоянный приток воды в клетку и ее разрыв. К счастью, животные клетки и бактерии контролируют осмотическое давление в своих клетках с помощью активного выкачивания неорганических ионов, таких как Na. Поэтому их общая концентрация внутри клетки ниже, чем снаружи. Например, земноводные значительную часть времени проводят в воде, а содержание солей в их крови и лимфе выше, чем в пресных водах. Организмы амфибий через кожные покровы непрерывно всасывают воду. Поэтому они вырабатывают много мочи. Лягушка, например, если ей перевязать клоаку, разбухает, как шар. И, наоборот, если земноводное попадает в солёную морскую воду, оно обезвоживается и погибает очень быстро. Поэтому моря и океаны для амфибий – неодолимая преграда. Клетки растений имеют жесткие стенки, которые предохраняют их от набухания. Многие простейшие избегают разрыва от поступающей внутрь клетки воды с помощью специальных механизмов, которые регулярно выбрасывают поступающую воду.

Таким образом, клетка является открытой термодинамической системой, осуществляя обмен веществом и энергией с окружающей средой, но сохраняющей определенное постоянство внутренней среды. Эти два свойства саморегулирующейся системы - открытость и постоянство - выполняются одновременно, причем за постоянство клетки как раз и отвечает обмен веществ ( метаболизм). Обмен веществ является тем регулятором, который способствует сохранению системы, он обеспечивает целесообразное реагирование на воздействие окружающей среды. Поэтому необходимым условием обмена веществ является раздражимость живой системы на всех уровнях, которая в то же время выступает как фактор системности и целостности системы.

Мембраны могут менять свою проницаемость под воздействием химических и физических факторов, в том числе в результате деполяризации мембраны при прохождении электрического импульса через систему нейронов и воздействия на нее.

Нейрон - это отрезок нервного волокна. Если на одном его конце действует раздражитель, то возникает электрический импульс. Величина его около 0,01 В для мышечных клеток человека, и он распространяется со скоростью порядка 4 м/с. Когда импульс доходит до синапса - соединения нейронов, которое можно рассматривать как своеобразное реле, передающее сигнал от одного нейрона на другой, то электрический импульс преобразуется в химический с помощью выделения нейромедиаторов - специфических веществ-посредников. Когда молекулы такого посредника попадают в щель между нейронами, то нейромедиатор путем диффузии достигает конца щели и возбуждает следующий нейрон.

Однако нейрон реагирует только в том случае, если на его поверхности имеются особые молекулы - рецепторы, которые могут связывать лишь данный медиатор и не реагировать на другой. Это происходит не только на мембране, но и в любом органе, например мышце, вызывая ее сокращение. Сигналы-импульсы через синапсы могут тормозить или усиливать передачу других, и поэтому нейроны исполняют логические функции («и», «или»), что в известной мере и послужило Н. Винеру основанием считать, что вычислительные процессы в мозгу живого организма и в ЭВМ идут принципиально по одной и той же схеме. Тогда информационный подход позволяет единым образом описывать неживую и живую природу.

Сам процесс воздействия сигнала на мембрану заключается в изменении ее высокого электрического сопротивления, так как разность потенциалов на ней тоже порядка 0,01 В. Уменьшение сопротивления приводит к увеличению импульса электрического тока и возбуждение передается дальше в виде нервного импульса, изменяя при этом возможность прохождения через мембрану определенных ионов. Таким образом, информация в организме может передаваться в сочетании, химическим и физическим механизмами, и это обеспечивает надежность и многообразие каналов ее передачи и переработки в живой системе.

С процессами клеточного дыхания, когда в митохондриях клетки образуются молекулы АТФ, обеспечивая ее необходимой энергией, тесно связаны и процессы обычного дыхания живого организма, для которого требуется кислород О2, получаемый в результате фотосинтеза. Механизмы этих процессов также основаны на законах диффузии. По существу, это те материальные и энергетические компоненты, которые необходимы живому организму. Фотосинтез - это процесс запасания солнечной энергии путем образования новых связей в молекулах синтезируемых веществ. Исходными веществами для фотосинтеза являются вода Н 2 О и двуокись углерода СО 2 . Из этих простых неорганических соединений образуются более сложные богатые энергией питательные вещества. В качестве побочного, но очень важного для нас продукта образуется молекулярный кислород О 2 . Примером может служить реакция, которая идет за счет поглощения квантов света и присутствия пигмента хлорофилла, содержащегося в хлоропластах.

В результате получается одна молекула сахара C 6 Н 12 О 6 и шесть молекул кислорода О 2 . Процесс идет по-стадийно, сначала на стадии фотолиза образуются путем расщепления воды водород и кислород, а затем водород, соединяясь с углекислым газом, образует углевод – сахар С 6 Н 12 О 6 . По существу, фотосинтез - преобразование лучистой энергии Солнца в энергию химических связей возникающих органических веществ. Таким образом, фотосинтез, производящий на свету кислород О 2 , является тем биологическим процессом, который обеспечивает живые организмы свободной энергией. Процесс обычного дыхания как процесс обмена веществ в организме, связанный с потреблением кислорода, является обратным процессу фотосинтеза. Оба эти процесса могут идти по следующей цепочке:

Солнечная энергия (фотосинтез)

питательные вещества + (дыхание)

Энергия химических связей.

Конечные продукты дыхания служат исходными веществами для фотосинтеза. Тем самым процессы фотосинтеза и дыхания участвуют в круговороте веществ на Земле. Часть солнечного излучения поглощается растениями и некоторыми организмами, которые, как мы уже знаем, являются автотрофами, т.е. самопитающимися (питание для них - солнечный свет). В результате процесса фотосинтеза автотрофы связывают углекислый газ атмосферы и воду, образуя до 150 млрд. тонн органических веществ, усваивая до 300 млрд. тонн СО 2 , и выделяют около 200 млрд. тонн свободного кислорода О 2 ежегодно.

Полученные органические вещества употребляются в качестве пищи человеком и травоядными животными, которыми, в свою очередь, питаются другие гетеротрофы. Растительные и животные остатки затем разлагаются до простых неорганических веществ, которые снова могут участвовать в виде СО 2 и Н 2 О в фотосинтезе. Часть получающейся энергии, в том числе запасенной в виде ископаемого энергетического топлива, идет на потребление ее живыми организмами, часть бесполезно рассеивается в окружающую среду. Поэтому процесс фотосинтеза благодаря возможности обеспечения им необходимой энергии и кислорода является на определенном этапе развития биосферы Земли катализатором эволюции живого.

Процессы диффузии лежат в основе обмена веществ в клетке, а значит, с их помощью данные процессы осуществляются и на уровне органов. Так осуществляются процессы всасывания в корневых волосках растений, кишечнике животных и человека; газообмен в устьицах растений, лёгких и тканях человека и животных, выделительные процессы.

Строением и изучением клеток биологи занимаются уже более 150 лет, начиная с Шлейдена, Шванна, Пуриме и Вирхова, который в 1855 г. установил механизм роста клеток путем их деления. Было установлено, что каждый организм развивается из одной клетки, которая начинает делиться и в результате этого образуется множество клеток, заметно отличающихся друг от друга. Но поскольку изначально развитие организма началось от деления первой клетки, то на одном из этапов нашего жизненного цикла мы сохраняем сходство с очень отдаленным одноклеточным предком, и можно в шутку сказать, что мы скорее произошли от амебы, чем от обезьяны.

Из клеток формируются органы, и у системы клеток появляются такие качества, которых нет у составляющих ее элементов, т.е. отдельных клеток. Эти отличия обусловлены набором белков, синтезируемых данной клеткой. Бывают клетки мышечные, нервные, кровяные ( эритроциты), эпителиальные и другие в зависимости от своей функциональности. Дифференцировка клеток происходит постепенно в процессе развития организма. В процессе деления клеток, их жизни и гибели в течение всей жизни организма происходит непрерывная замена клеток.

Ни одна молекула в нашем теле не остается неизменной дольше нескольких недель или месяцев. За это время молекулы синтезируются, выполняют свою роль в жизни клетки, разрушаются и заменяются другими, более или менее идентичными молекулами. Самое удивительное, что живые организмы в целом значительно более постоянны, чем составляющие их молекулы, и строение клеток и всего тела, состоящего из этих клеток, остается в этом безостановочном круговороте неизменным, несмотря на замену отдельных компонентов.

Причем это не замена отдельных деталей автомобиля, а, как образно сравнивает С. Роуз, тело с кирпичной постройкой, «из которой сумасшедший каменщик непрерывно ночью и днем вынимает один кирпич за другим и вставляет на их место новые. При этом наружный вид постройки остается прежним, а материал постоянно заменяется». Мы рождаемся с одними нейронами и клетками, а умираем с другими. Примером является сознание, понимание и восприятие ребенка и старого человека. Во всех клетках имеется полная генетическая информация для построения всех белков данного организма. Хранение и передача наследственной информации осуществляются с помощью клеточного ядра.

Вывод: Нельзя преувеличить роль проницаемости плазматической мембраны в жизнедеятельности клетки. Большинство процессов, связанных с обеспечением клетки энергией, получением продуктов и избавлением ее от продуктов распада, основаны на закономерностях диффузии через эту полупроницаемую живую преграду.

Осмос – по сути дела, простая диффузия воды из мест с ее большей концентрацией, в места с меньшей концентрацией воды.

Пассивный транспорт – это перенос веществ из мест с большим значением электрохимического потенциала к местам с его меньшим значением. Перенос малых водорастворимых молекул осуществляется при помощи специальных транспортных белков. Это особые трансмембранные белки, каждый из которых отвечает за транспорт определенных молекул или групп родственных молекул.

Часто бывает необходимым обеспечить перенос через мембрану молекул против их электрохимического градиента. Такой процесс называется активным транспортом и осуществляется белками-переносчиками, деятельность которых требует затрат энергии. Если связать белок-переносчик с источником энергии, можно получить механизм, обеспечивающий активный транспорт веществ через мембрану.

II.6. Применение диффузии.

Человек с древних времён использует явления диффузии. С данным процессом связаны приготовление пищи и обогрев жилища. Мы встречаемся с диффузией при термообработке металлов (сварке, пайке, резке, нанесении покрытий и т.п.); нанесении тонкого слоя металлов на поверхность металлических изделий для повышения химической стойкости, прочности, твёрдости деталей и приборов, или в защитно-декоративных целях (оцинкование, хромирование, никелирование).

Природный горючий газ, которым мы пользуемся дома для приготовления пищи, не имеет ни цвета, ни запаха. Поэтому трудно было бы сразу заметить утечку газа. А при утечке за счёт диффузии газ распространяется по всему помещению. Между тем при определённом соотношении газа с воздухом в закрытом помещении образуется смесь, которая может взорваться, например, от зажженной спички. Газ может вызвать и отравление.

Чтобы сделать поступление газа в помещение заметным, на распределительных станциях горючий газ предварительно смешивают с особыми веществами, обладающими резким неприятным запахом, который легко ощущается человеком даже при весьма малой его концентрации. Такая мера предосторожности позволяет быстро заметить накопление газа в помещении, если образовалась утечка.

В современной промышленности используют вакуумформование, способ изготовления изделий из листовых термопластов. Изделие требуемой конфигурации получают за счет разности давлений, возникающей вследствие разрежения в полости формы, над которой закреплен лист. Применяется, напр., в производстве емкостей, деталей холодильников, корпусов приборов. За счёт диффузии таким путём можно сварить то, что само сварить невозможно (металл со стеклом, стекло и керамику, металлы и керамику, и многое другое).

За счёт диффузии различных изотопов урана через пористые мембраны полечено топливо для ядерных реакторов. Иногда ядерное топливо называют ядерным горючим.

Всасывание (рассасывание) веществ при введении их в подкожную клетчатку, в мышцы или при аппликации на слизистые оболочки глаза, носа, кожу слухового прохода происходит главным образом за счет диффузии. На этом основано применении многих лекарственных веществ, причем всасывание в мышцах происходит быстрее, чем в коже.

Народная мудрость гласит: «коси коса, пока роса». Скажете, причем здесь диффузия и утренний покос? Объяснение очень просто. Во время утренней росы у трав повышенное тургорное давление, открыты устьица, стебли упругие, что облегчает их скашивание (трава, скошенная при закрытых устьицах, хуже сохнет).

В садоводстве, при окулировке и прививке растений на срезах за счёт диффузии образуется каллюс (от лат. Сallus – мозоль) - раневая ткань в виде наплыва в местах повреждений и способствует их заживлению, обеспечивает срастание привоя с подвоем.

Каллюс используют для получения культуры изолированных тканей (эксплантации). Это метод длительного сохранения и выращивания в специальных питательных средах клеток, тканей, небольших органов или их частей, выделенных из организма человека, животных и растений. Основан на методах выращивания культуры микроорганизмов, обеспечивающих асептику, питание, газообмен и удаление продуктов обмена культивируемых объектов. Одно из преимуществ метода тканевых культур - возможность наблюдения за жизнедеятельностью клеток с помощью микроскопа. Для этого растительную ткань выращивают на питательных средах, содержащих ауксины и цитокинины. Каллюс состоит обычно из слабо дифференцированных однородных клеток образовательной ткани, но при изменении условий выращивания, прежде всего содержания фитогормонов в питательной среде, в нем возможно образование флоэмы, ксилемы и других тканей, а также развитие различных органов и целого растения.

II.7. Проектирование отдельных опытов.

Используя научную литературу, я попытался повторить наиболее интересные для меня опыты. Механизм диффузии и результаты этих опытов я изобразил в презентации в виде анимационных моделей.

ОПЫТ 1. Взять две пробирки: одна до половины наполнена водой, другая до половины наполнена песком. Воду вылить в пробирку с песком. Объём смеси воды и песка в пробирке меньше суммы объёмов воды и песка.

ОПЫТ 2. Длинную стеклянную трубку до половины наполнить водой, а затем сверху налить подкрашенный спирт. Общий уровень жидкостей в трубке отметить резиновым кольцом. После перемешивания воды и спирта объём смеси уменьшается.

(Опыты 1 и 2. доказывают, что между частицами вещества существуют промежутки; во время диффузии они заполняются частицами вещества – пришельца.)

ОПЫТ 3. Ватку, смоченную нашатырным спиртом, приведём в соприкосновение с ваткой, смоченной индикатором фенолфталеином. Наблюдаем окрашивание ваток в малиновый цвет.

Теперь ватку, смоченную нашатырным спиртом, помещают на дно стеклянного сосуда, а смоченную фенолфталеином. Прикрепим к крышке и накроем этой крышкой стеклянный сосуд. Через некоторое время ватка, смоченная фенолфталеином, начинает окрашиваться.

В результате взаимодействия с нашатырным спиртом фенолфталеин окрашивается в малиновый цвет, что мы и наблюдали при соприкосновении ваток. Но почему тогда во втором случае ватка, смоченная фенолфталеином. Также окрашивается, ведь теперь ватки в соприкосновение не приводились? Ответ: непрерывное хаотическое движение частиц веществ.

ОПЫТ 4. Вдоль стенки внутри высокого цилиндрического сосуда опустить узкую полоску фильтровальной бумаги, пропитанной смесью крахмального клейстера с раствором индикатора фенолфталеина. На дно сосуда поместить кристаллы йода. Сосуд плотно закрыть крышкой, к которой подвешена вата, пропитанная раствором аммиака.

За счёт взаимодействия йода с крахмалом по полоске бумаги вверх поднимается сине – фиолетовое окрашивание. Одновременно вниз распространяется малиновая окраска – доказательство движения молекул аммиака. Через несколько минут границы окрашенных участков бумаги встретятся, и далее синий и малиновый цвета смешиваются, то есть происходит диффузия.[ 10]

ОПЫТ 5. (проводят вдвоём) Взять часы с секундной стрелкой, рулетку, флакон туалетной воды и встать в разные углы комнаты. Один засекает время и открывает флакон. Другой отмечает время, когда почувствует запах туалетной воды. Измеряя расстояние между экспериментаторами, находим скорость диффузии. Для точности опыт повторяется 3 – 4 раза, и находится среднее значение скорости. Если расстояние между эксперитентаторами 5 метров, то запах чувствуется через 12 минут. То есть скорость диффузии в данном случае равна 2, 4 м /мин.

ОПЫТ 6. ОПРЕДЕЛЕНИЕ ВЯЗКОСТИ ПЛАЗМЫ МЕТОДОМ ПЛАЗМОЛИЗА (по П.А.Генкелю) .

Скорость наступления выпуклого плазмолиза в растительных клетках при их обработке гипертаническим раствором зависит от вязкости цитоплазмы; чем меньше вязкость цитоплазмы, тем скорее вогнутый плазмолиз переходит в выпуклый. Вязкость цитоплазмы зависит от степени дисперсии коллоидных частиц и их гидратации, от содержания воды в клетке, от возраста клеток и других факторов.

Ход работы. Делают тонкий срез эпидермиса с листа алоэ, или сдирают эпидермис с мягких чешуй лука. Изготовленные срезы подкрашивают в часовом стекле в течение 10 минут в растворе нейтрального красного концентрации 1:5000. Затем срезы объекта помещают на предметное стекло в каплю сахарозы слабой концентрации и закрывают одним покровным стеклом. Под микроскопом отмечают состояние плазмолиза. Сначала в клетках отмечается вогнутый плазмолиз. В дальнейшем эта форма или сохраняется, или с той или иной быстротой переходит в выпуклую форму. Важно отметить время перехода вогнутого плазмолиза в выпуклый. Промежуток времени, в течение которого вогнутый плазмолиз переходит в выпуклый, является показателем степени вязкости протоплазмы. Чем больше продолжительность времени перехода к выпуклому плазмолизу, тем больше вязкость плазмы. Плазмолиз в клетках лука начинается быстрее, чем в кожице алоэ. Значит цитоплазма клеток алоэ более вязкая.

ОПЫТ 7. ПЛАЗМОЛИЗ. ДЕПЛАЗМОЛИЗ. ПРОНИКНОВЕНИЕ ВЕЩЕСТВ В ВАКУОЛЬ [ 2]

Некоторые органические вещества довольно быстро проникают в вакуоль. В клетках, при их выдерживании в растворах таких веществ, сравнительно быстро теряется плазмолиз и наступает деплазмолиз.

Деплазмолиз – это восстановление тургора в клетках (т.е. явление, обратное плазмолизу).

Ход работы. Срезы верхнего эпидермиса чешуи окрашенного лука (вогнутая сторона) помещают в каплю I М раствора удобрения для растений мочевины или глицерина прямо на предметном стекле, накрывают покровным стеклом. Через 15-30 минут объекты рассматривают под микроскопом. Хорошо заметны плазмолизированные клетки. Оставляют срезы в капле раствора еще на 30-40 минут. Потом опять рассматривают под микроскопом и наблюдают деплазмолиз - восстановление тургора.

Вывод : растения не могут чётко контролировать количество поступающих и выходящих из клеток химических веществ.

III. Заключение.

Закономерностям диффузии подчиняются процессы физико-химических перемещений элементов в земных недрах и во Вселенной, а также процессы жизнедеятельности клеток и тканей живых организмов. Диффузия играет важную роль в различных областях науки и техники, в процессах, происходящих в живой и неживой природе. Диффузия оказывает влияние на протекание многих химических реакций, а также многих физико-химических процессов и явлений: мембранных, испарения, конденсации, кристаллизации, растворения, набухания, горения, каталитических, хроматографических, люминесцентных, электрических и оптических в полупроводниках, замедления нейтронов в ядерных реакторах и т.д. Диффузия большое значение имеет при образовании на границах фаз двойного электрического слоя, диффузиофорезе и электрофорезе, в фотографических процессах для быстрого получения изображения и др. Диффузия служит основой многих распространённых технических операций: спекания порошков, химико-термической обработки металлов, металлизации и сварки материалов, дубления кожи и меха, крашения волокон, перемещения газов с помощью диффузионных насосов. Роль диффузии существенно возросла в связи с необходимостью создания материалов с заранее заданными свойствами для развивающихся областей техники (ядерной энергетики, космонавтики, радиационных и плазмохимических процессов и т.п.). Знание законов, управляющих диффузией, позволяет предупреждать нежелательные изменения в изделиях, происходящие под влиянием высоких нагрузок и температур, облучения и могое-многое другое…

Каким вообще был бы мир без диффузии? Прекратись тепловое движение частиц – и вокруг всё станет мёртвым!

В своей работе я обобщил собранный по теме реферата материал и подготовил для его защиты презентацию, сделанную в редакторе Power Point. Данная презентация, на мой взгляд, сможет разнообразить материал урока по данной теме. Некоторые описанные в литературе опыты были повторены и немного видоизменены мной. Наиболее интересные примеры диффузии представлены на слайдах презентации в анимационных моделях.

IV. Используемая литература:

1. Антонов В. Ф., Черныш А. М., Пасечник В. И., и др. Биофизика.

М., Арктос-Вика-пресс, 1996

2. Афанасьев Ю.И., Юрина Н.А., Котовский Е.Ф. и др. Гистология.

М. Медицина, 1999.

3. Албертс Б., Брэй Д., Льюис Дж. и др. Молекулярная биология клетки.

В 3-х томах. Том 1. М., Мир, 1994.

4. Большая энциклопедия Кирилла и Мефодия 2006

5. Варикаш В.М. и др. Физика в живой природе. Минск,1984.

6. Демьянков Е.Н. Задачи по биологии. М. Владос, 2004.

7. Николаев Н.И. Диффузия в мембранах. М. Химия, 1980, с.76

8. Перышкин А.В. Физика. 7. М. Дрофа, 2004.

9. Физический энциклопедический словарь, М., 1983, с. 174-175, 652, 754

10. Шабловский В. Занимательная физика. С-Петербург, «тригон» 1997, с.416

11. xttp//bio. fizten/ru./

12. xttp//markiv. narod.ru./

13. «http://ru.wikipedia.org/wiki/%D0%94%D0%B8%D1%84%D1%84%D1%83%D0%B7%D0%B8%D1%8F» Категории: Явления на атомном уровне | Термодинамические явления | Явления переноса | Диффузия