Какие длины волн соответствуют инфракрасному излучению. Что является источником инфракрасного излучения. Истории наших читателей

> Инфракрасные волны

Что такое инфракрасные волны : длина волны инфракрасного излучения, диапазон инфракрасных волн и частота. Изучите схемы инфракрасного спектра и источники.

Инфракрасный свет (ИК) – электромагнитные лучи, которые по показателю длин волн превышает видимый (0.74-1 мм).

Задача обучения

  • Разобраться в трех диапазонах ИК-спектра и описать процессы поглощения и излучения молекулами.

Основные моменты

  • ИК-свет вмещает большую часть теплового излучения, создаваемого телами примерно комнатной температуры. Излучается и поглощается, если во вращении и колебании молекул происходят изменения.
  • ИК часть спектра можно разбить на три области по длине волн: дальний инфракрасный (300-30 ТГц), средний (30-120 ТГц) и ближний (120-400 ТГц).
  • ИК также именуют тепловым излучением.
  • Важно разобраться в концепции излучательной способности, чтобы понять ИК.
  • ИК-лучи можно применить для дистанционного определения температуры объектов (термография).

Термины

  • Термография – дистанционное вычисление перемен температуры тела.
  • Тепловая радиация – электромагнитное излучение, создаваемое телом из-за температуры.
  • Излучательная способность – умение поверхности излучать.

Инфракрасные волны

Инфракрасный (ИК) свет – электромагнитные лучи, которые по показателю длин волн превосходят видимый свет (0.74-1 мм). Диапазон инфракрасных волн сходится с диапазоном частот 300-400 ТГц и вмещает огромное количество теплового излучения. ИК-свет поглощается и излучается молекулами при изменении во вращении и колебаниях.

Перед вами главные категории электромагнитных волн. Разделительные линии в некоторых местах отличаются, а другие категории могут перекрываться. Микроволны занимают высокочастотный участок радиосекции электромагнитного спектра

Подкатегории ИК-волн

ИК-часть электромагнитного спектра занимает диапазон от 300 ГГц (1 мм) до 400 ТГц (750 нм). Можно выделить три вида инфракрасных волн:

  • Дальний ИК-диапазон: 300 ГГц (1 мм) до 30 ТГц (10 мкм). Нижнюю часть можно именовать микроволнами. Эти лучи поглощаются из-за вращения в газофазных молекулах, молекулярных движениях в жидкостях и фотонов в твердых телах. Вода в земной атмосфере так сильно поглощается, что делает ее непрозрачной. Но есть определенные длины волн (окна), используемые для пропускания.
  • Средний ИК-диапазон: 30 до 120 ТГц (от 10 до 2.5 мкм). Источниками выступают горячие объекты. Поглощается колебаниями молекул (разнообразные атомы вибрируют в позициях равновесия). Иногда этот диапазон именуют отпечатком пальца, потому что это специфическое явление.
  • Ближайший ИК-диапазон: 120 до 400 TГц (2500-750 нм). Эти физические процессы напоминают те, что происходят в видимом свете. Наиболее высокие частоты можно найти определенной разновидностью фотографической пленки и датчиками для инфракрасной, фото- и видеосъемки.

Тепло и тепловое излучение

Инфракрасное излучение именуют также тепловым. ИК-свет от Солнца охватывает всего 49% земного нагрева, а все остальное – видимый свет (поглощается и повторно отбивается на более длинных волнах).

Тепло – энергия в переходной форме, которая течет из-за разницы в температурных показателях. Если тепло передается теплопроводностью или конвекцией, то излучение способно распространяться в вакууме.

Чтобы разобраться в ИК-лучах, следует внимательно рассмотреть концепцию излучательной способности.

Источники ИК-волн

Люди и большая часть планетарного окружения создают тепловые лучи на 10 мкм. Это граница, отделяющая среднюю и дальнюю ИК-области. Многие астрономические тела испускают улавливаемое количество ИК-лучей на нетепловых длинах волн.

ИК-лучи можно использовать, чтобы вычислять температурные показатели объектов на расстоянии. Этот процесс именуют термографией и активнее всего используют в военном и промышленном употреблении.


Термографическое изображение собаки и кошки

ИК-волны также используют в отоплении, связи, метеорологии, спектроскопии, астрономии, биологии и медицине, а также анализе произведений искусства.

Длина волны инфракрасного излучения

В Интернете распространяется много недостоверной (а порой и откровенно лживой) информации по вопросу проникновения инфракрасного излучения в тело человека. Обычно такую информацию распространяют продавцы кабин с карбоновыми (пленочными) нагревателями, придумывая различные псевдонаучные термины: "резонансное поглощение", "Лучи Жизни" и т.д. Чтобы внести ясность в этот вопрос, мы приводим описание взаимодействия инфракрасного излучения с живыми тканями на основе научной литературы, которая принята во всем мире.

Взаимодействие ИК излучения с живыми тканями

Инфракрасную область спектра, согласно международной классификации, разделяют на ближнюю IR-A (от 0.76 до 1.5 мкм), среднюю IR-B (1.5 - 3 мкм) и далёкую IR-C (свыше 3 мкм).

С точки зрения физиологии человека ближние инфракрасные лучи в той области и в тех пропорциях, в которых мы обычно получаем их от Солнца сквозь атмосферу, не только полезны, но и необходимы. Ближние инфракрасные лучи (до 1,5 мкм) поглощаются в глубине кожных покровов, в то время как инфракрасные лучи с большей длиной волны поглощаются уже на их поверхности.

Действительно, кожа является прозрачной для инфракрасного излучения с длиной волны до 1,5 мкм. Затем она становиться относительно не прозрачной и характеризуется довольно сложным спектром поглощения. Кожу следует рассматривать как комплекс, состоящий из эпидермиса, прозрачность которого может меняться в зависимости от состояния, из пигментов, межклеточных тканей, подкожного жира и т.д. Обладая большой гигроскопичностью и будучи богат сосудами, комплекс кожи представляет собой физиологический экран, прозрачность которого для инфракрасных лучей зависит от длины волны. Следует считать, что для инфракрасных лучей с длиной волны более 5 мкм кожа полностью непрозрачна.

Учитывая физиологические особенности человека, терапевты делят инфракрасный диапазон на 3 категории:

    длина волны более 5 мкм - излучение поглощаемое на поверхности кожи;

    длина волны 1,5 ÷ 5 мкм - излучение, поглощаемое эпидермисом и соединительно-тканным слоем кожи;

    длина волны 0,76 ÷ 1,5 мкм - излучение проникающее в глубь кожи;

Когда нужно воздействовать на поверхность кожи, слизистую оболочку, сосудистую систему, пользуются длинноволновым диапазоном. Для воздействия же в глубину, например на лимфатическую систему или мышечную ткань, применяют инфракрасное излучение с длиной волны 0,76-1,5 мкм. Поглощенная кожей энергия превращается в тепло. Терпимая температура кожи, составляет для коротковолнового диапазона излучения 43,8°С, и доходит для длинноволнового диапазона излучения до 45,5°С,что указывает на различное действие этих двух областей излучений.

Человеческое тело, так же как и любое нагретое тело испускает инфракрасное излучение. Любой биологический объект (в частности человек) представляет собой сложную систему различных молекул, которые имеют собственные спектры излучения, поэтому общее излучение человека будет значительно отличаться от излучения абсолютно черного тела при той же температуре. Это излучение имеет место в диапазоне между 2 и 14 мкм с максимумом у 6 мкм.

Важно! Для эффективного и объемного прогрева тела человека, необходимо облучать его инфракрасным излученим с длинной волны в диапазоне 0.76 - 3 мкм, только в этом случае будет наблюдаться максимальное проникновение ИК излучения. Инфракрасные волны с длинной волны более 5 мкм не проникают в тело человека, а поглощаются верхними слоями кожи.

Для реальных биологических объектов закон Кирхгофа не выполняется , т.е. спектры поглощения и спектры излучения различны. На следующих графиках приведены спектры поглощения для воды и ткани человеческих органов в зависимости от длины волны. Заметим, что ткань человеческого организма состоит из воды на 98% и этот факт объясняет схожесть характеристик поглощения.

Мы специально приводим несколько графиков из различных первоисточников, чтобы исключить какие-либо спекуляции на тему поглощения ИК излучения. Как видно из этих графиков наибольшее проникновение наблюдается в диапазоне от 0,7 до 3 мкм и этот диапазон называется "окном терапевтической прозрачности". Только излучение из этого диапазона может проникнуть на глубину 4 см. При других длинах волн инфракрасное излучение поглащается верхними слоями кожи и не может проникнуть вглубь тела человека.

График Источник

"LOW REACTIVE-LEVEL LASER THERAPY PRACTICAL APPLICATION" T.Ohshiro (1988 г.),

Международная Организация Труда, «Энциклопедия по охране и безопасности труда», 2-е изд., 1988





"Биофизические основы физиотерапии", Г.Н. Пономаренко, И.И. Турковский, Москва, "Медицина", 2006 г., стр. 17-18., учебник для ВУЗов

Инфракрасное излучение является естественным природным видом излучения. Каждый человек ежедневно подвергается его действию. Огромная часть энергии Солнца поступает на нашу планету именно в виде ИК-лучей. Однако в современном мире существует множество приборов, в которых задействовано инфракрасное излучение. На организм человека оно может воздействовать различным образом. Во многом это зависит от типа и целей использования этих самых приборов.

Что это такое

Инфракрасное излучение, или ИК-лучи, - это вид электромагнитного излучения, занимающий спектральную область от красного видимого света (для которого характерна длина волны 0,74 мкм) до коротковолнового радиоизлучения (с длиной волны 1-2 мм). Это довольно обширная область спектра, поэтому ее дополнительно подразделяют на три области:

  • ближний (0,74 - 2,5 мкм);
  • средний (2,5 - 50 мкм);
  • дальний (50-2000 мкм).

История открытия

В 1800 году ученый из Англии В. Гершель сделал наблюдение, что в невидимой части солнечного спектра (за пределами красного света) повышается температура термометра. Впоследствии была доказана подчиненность инфракрасного излучения законам оптики и сделан вывод о его родстве с видимым светом.

Благодаря трудам советского физика А. А. Глаголевой-Аркадьевой, в 1923 году получившей радиоволны с λ=80 мкм (ИК-диапазон), было экспериментально доказано существование непрерывного перехода от видимого излучения к ИК-излучению и радиоволновому. Таким образом, был сделан вывод об их общей электромагнитной природе.

Практически все в природе способно испускать длины волн, соответствующих инфракрасному спектру, а значит, является Тело человека не является исключением. Все мы знаем, что все вокруг состоит из атомов и ионов, даже человек. А эти возбужденные частицы способны испускать Переходить в возбужденное состояние они могут под действием различных факторов, например электрических разрядов или при нагревании. Так, в спектре излучения пламени газовой плиты имеется полоса с λ=2,7 мкм от молекул воды и с λ=4,2 мкм от углекислого газа.

ИК-волны в быту, науке и промышленности

Используя дома и на работе те или иные приборы, мы редко задаемся вопросом о влиянии инфракрасного излучения на организм человека. Между тем довольно популярными сегодня являются ИК-обогреватели. Принципиальным их отличаем от масляных радиаторов и конвекторов является способность нагревать не сам воздух непосредственно, а все объекты, находящиеся в помещении. То есть сначала нагреваются мебель, полы и стены, а затем они отдают свое тепло в атмосферу. При этом оказывает действие инфракрасное излучение и на организмы - человека и его питомцев.

Также широко применяются ИК-лучи при передаче данных и дистанционном управлении. Во многих мобильных телефонах имеются ИК-порты, предназначенные для обмена файлами между ними. А все пульты от кондиционеров, музыкальных центров, телевизоров, некоторых управляемых детских игрушек также используют электромагнитные лучи в инфракрасном диапазоне.

Использование ИК-лучей в армии и космонавтике

Наиболее важное значение инфракрасные лучи имеют для авиакосмической и военной отраслей. На базе фотокатодов, имеющих чувствительность к ИК-излучению (до 1,3 мкм), создаются (различные бинокли, прицелы и т. д.). Они позволяют при одновременном облучении объектов инфракрасным излучением произвести прицеливание или осуществлять наблюдение в абсолютной темноте.

Благодаря созданным высокочувствительным приемникам инфракрасных лучей стало возможным производство самонаводящихся ракет. Датчики в их головной части реагируют на ИК-излучение цели, температура которой, как правило, выше окружающей среды, и направляют ракету в цель. На том же принципе основано обнаружение с помощью теплопеленгаторов нагретых частей кораблей, самолетов, танков.

ИК-локаторы и дальномеры могут обнаруживать в полной темноте различные объекты и соизмерять расстояние до них. Особые приборы - которые излучают в инфракрасной области, применяются для космической и дальней наземной связи.

Инфракрасное излучение в научной деятельности

Одним из самых распространенных является изучение спектров испускания и поглощения в ИК-области. Применяется оно при изучении особенностей электронных оболочек атомов, для определения структур всевозможных молекул, а кроме того, и в качественном и количественном анализе смесей различных веществ.

Из-за различий коэффициентов рассеяния, пропускания и отражения тел в видимых и ИК-лучах фотографии, сделанные в различных условиях, несколько отличаются. На снимках, выполненных в инфракрасном диапазоне, зачастую видно больше деталей. Такие снимки широко распространены в астрономии.

Изучение влияния ИК-лучей на организм

Первые научные данные о влиянии инфракрасного излучения на организм человека датированы 1960 годами. Автором исследований является японский врач Тадаши Ишикава. В ходе своих экспериментов ему удалось установить, что ИК-лучи имеют свойство проникать глубоко внутрь тела человека. При этом происходят процессы терморегуляции, сходные с реакцией на нахождение в сауне. Однако потоотделение начинается при более низкой температуре окружающего воздуха (она составляет порядка 50 °С), а прогревание внутренних органов происходит гораздо глубже.

В ходе такого прогревания происходит усиление кровообращения, расширяются сосуды органов дыхания, подкожной клетчатки и кожи. Вместе с тем длительное воздействие инфракрасного излучения на человека способно вызвать тепловой удар, а сильное ИК-излучение приводит к появлению ожогов различной степени.

Защита от ИК-излучения

Существует небольшой перечень мероприятий, направленных на уменьшение опасности воздействия инфракрасного излучения на организм человека:

  1. Понижение интенсивности излучения. Достигается оно посредством выбора соответствующего технологического обо-ру-до-ва-ния, своевременной заменой устаревшего, а также его рациональной компоновкой.
  2. Удаление рабочих от источника излучения. Если позволяет технологическая линия, следует предпочесть дистанционное управление ею.
  3. Установка защитных экранов на источник или рабочее место. Такие ограждения могут быть устроены двумя способами, позволяющими снизить влияние инфракрасного излучения на организм человека. В первом случае они должны отражать электромагнитные волны, а во втором - задерживать их и преобразовывать энергию излучения в тепловую с последующим ее отведением. В связи с тем, что защитные экраны не должны лишать специалистов возможности вести мониторинг происходящих на производстве процессов, они могут изготавливаться прозрачными или полупрозрачными. Для этого в качестве материалов выбирают силикатные или кварцевые стекла, а также металлические сетки и цепи.
  4. Теплоизоляция или охлаждение горячих поверхностей. Главной целью тепловой изоляции является снижение риска получения рабочими различных ожогов.
  5. Средства индивидуальной защиты (разнообразная спецодежда, очки со встроенными светофильтрами, щит-ки).
  6. Профилактические мероприятия. Если в ходе вышеперечисленных действий уровень воздействия ИК-излучения на организм остается достаточно высоким, то следует подобрать соответствующий режим труда и отдыха.

Польза для организма человека

Инфракрасное излучение, воздействующее на тело человека, приводит к улучшению циркуляции крови вследствие расширения сосудов, лучшему насыщению органов и тканей кислородом. Кроме того, повышение температуры тела оказывает болеутоляющий эффект за счет воздействия лучей на нервные окончания в кожных покровах.

Было подмечено, что хирургические операции, проведенные под действием ИК-излучения, имеют ряд преимуществ:

  • несколько легче переносятся боли после операций;
  • быстрее идет регенерация клеток;
  • влияние инфракрасного излучения на человека позволяет избежать охлаждения внутренних органов в случае выполнения операции на открытых полостях, что понижает риск развития шока.

У больных с ожогами инфракрасное излучение создает возможность удаления некрозов, а также выполнения аутопластики на более раннем этапе. Кроме того, снижается срок лихорадки, в меньшей степени выражены анемия и гипопротеинемия, снижается частота осложнений.

Доказано, что ИК-излучение способно ослабить действие некоторых ядохимикатов, путем повышения неспецифического иммунитета. Многие из нас знают о лечении ринита и некоторых других проявления простуды синими ИК-лампами.

Вред для человека

Стоит отметить, что вред от инфракрасного излучения для организма человека тоже может быть весьма существенным. Наиболее очевидные и распространенные случаи - ожоги кожи и дерматиты. Происходить они могут либо при слишком длительном воздействии слабых волн инфракрасного спектра, либо в ходе интенсивного облучения. Если говорить о медицинских процедурах, то редко, но все же случаются тепловые удары, астении и обострения болей при неправильном лечении.

Одной из современных проблем являются ожоги глаз. Наиболее опасны для них ИК-лучи с длинами волн в пределах 0,76-1,5 мкм. Под их влиянием происходит нагревание хрусталика и водянистой влаги, что может приводить к различным нарушениям. Одним из самых распространенных последствий является светобоязнь. Об этом стоит помнить детям, играющим с лазерными указками, и сварщикам, пренебрегающим средствами индивидуальной защиты.

ИК-лучи в медицине

Лечение с помощью инфракрасного излучения бывает местным и общим. В первом случае осуществляется локальное действие на определенный участок тела, а во втором действию лучей подвергается весь организм. Курс лечения зависит от заболевания и может составлять от 5 до 20 сеансов по 15-30 минут. При проведении процедур обязательным условием является использование защитных средств. Для сохранения здоровья глаз используются особые картонные накладки или очки.

После первой же процедуры на поверхности кожи появляются покраснения с нечеткими границами, проходящие примерно через час.

Действие ИК-излучателей

В условиях доступности многих медицинских приборов люди приобретают их для индивидуального пользования. Однако необходимо помнить, что такие устройства должны соответствовать особым требованиям и использоваться с соблюдением правил безопасности. Но главное - важно понимать, что, как и любой медицинский прибор, излучатели инфракрасных волн нельзя использовать при ряде заболеваний.

Влияние инфракрасного излучения на организм человека
Длина волны, мкм Полезное действие
9,5 мкм Иммунокоррегирующее действие при иммунодефицитных состояниях, вызванных голоданием, отравлением четыреххлористым углеродом, применением иммунодепрессантов. Приводит к восстановлению нормальных показателей клеточного звена иммунитета.
16.25 мкм Антиоксидантное действие. Осуществляется за счет образования свободных радикалов из супероксидов и гидроперекисей, и их рекомбинации.
8,2 и 6,4 мкм Антибактериальное действие и нормализация микрофлоры кишечника за счет влияния на процесс синтеза гормонов простагландинов, приводящая к иммуномоделирующему эффекту.
22,5 мкм Приводит к переводу многих нерастворимых соединений, таких как тромбы и атеросклеротические бляшки, в растворимое состояние, позволяющее выводить их из организма.

Поэтому подбирать курс терапии должен квалифицированный специалист, опытный врач. В зависимости от длины испускаемых инфракрасных волн, приборы могут быть использованы для разных целей.

Инфракра́сное излуче́ние - электромагнитное излучение , занимающее спектральную область между красным концом видимого света (с длиной волны λ = 0,74 мкм и частотой 430 ТГц) и микроволновым радиоизлучением (λ ~ 1-2 мм, частота 300 ГГц).

Весь диапазон инфракрасного излучения условно делят на три области:

Длинноволновую окраину этого диапазона иногда выделяют в отдельный диапазон электромагнитных волн - терагерцевое излучение (субмиллиметровое излучение).

Инфракрасное излучение также называют «тепловым излучением », так как инфракрасное излучение от нагретых предметов воспринимается кожей человека как ощущение тепла. При этом длины волн, излучаемые телом, зависят от температуры нагревания: чем выше температура, тем короче длина волны и выше интенсивность излучения. Спектр излучения абсолютно чёрного тела при относительно невысоких (до нескольких тысяч Кельвинов) температурах лежит в основном именно в этом диапазоне. Инфракрасное излучение испускают возбуждённые атомы или ионы.

Энциклопедичный YouTube

    1 / 3

    ✪ 36 Инфракрасное и ультрафиолетовое излучения Шкала электромагнитных волн

    ✪ Опыты по физике. Отражение инфракрасного излучения

    ✪ Электроотопление (инфракрасное отопление). Какую систему отопления выбрать?

    Субтитры

История открытия и общая характеристика

Инфракрасное излучение было открыто в 1800 году английским астрономом У. Гершелем . Занимаясь исследованием Солнца, Гершель искал способ уменьшения нагрева инструмента, с помощью которого велись наблюдения. Определяя с помощью термометров действия разных участков видимого спектра, Гершель обнаружил, что «максимум тепла» лежит за насыщенным красным цветом и, возможно, «за видимым преломлением». Это исследование положило начало изучению инфракрасного излучения.

Раньше лабораторными источниками инфракрасного излучения служили исключительно раскалённые тела либо электрические разряды в газах. Сейчас на основе твердотельных и молекулярных газовых лазеров созданы современные источники инфракрасного излучения с регулируемой или фиксированной частотой. Для регистрации излучения в ближней инфракрасной-области (до ~1,3 мкм) используются специальные фотопластинки. Более широким диапазоном чувствительности (примерно до 25 мкм) обладают фотоэлектрические детекторы и фоторезисторы . Излучение в дальней ИК-области регистрируется болометрами - детекторами, чувствительными к нагреву инфракрасным излучением .

ИК-аппаратура находит широкое применение как в военной технике (например, для наведения ракет), так и в гражданской (например, в волоконно-оптических системах связи). В качестве оптических элементов в ИК-спектрометрах используются либо линзы и призмы, либо дифракционные решётки и зеркала. Чтобы исключить поглощение излучения в воздухе, спектрометры для дальней ИК-области изготавливаются в вакуумном варианте .

Поскольку инфракрасные спектры связаны с вращательными и колебательными движениями в молекуле, а также с электронными переходами в атомах и молекулах, ИК-спектроскопия позволяет получать важные сведения о строении атомов и молекул, а также о зонной структуре кристаллов .

Диапазоны инфракрасного излучения

Объекты обычно испускают инфракрасное излучение во всём спектре длин волн, но иногда только ограниченная область спектра представляет интерес, поскольку датчики обычно собирают излучение только в пределах определенной полосы пропускания. Таким образом, инфракрасный диапазон часто подразделяется на более мелкие диапазоны.

Обычная схема деления

Чаще всего разделение на более мелкие диапазоны производится следующим образом:

Аббревиатура Длина волны Энергия фотонов Характеристика
Near-infrared, NIR 0.75-1.4 мкм 0.9-1.7 эВ Ближний ИК, ограниченный с одной стороны видимым светом, с другой - прозрачностью воды, значительно ухудшающейся при 1,45 мкм. В этом диапазоне работают широко распространенные инфракрасные светодиоды и лазеры для систем волоконной и воздушной оптической связи. Видеокамеры и приборы ночного видения на основе ЭОП также чувствительны в этом диапазоне.
Short-wavelength infrared, SWIR 1.4-3 мкм 0.4-0.9 эВ Поглощение электромагнитного излучения водой значительно возрастает при 1450 нм. Диапазон 1530-1560 нм преобладает в области дальней связи.
Mid-wavelength infrared, MWIR 3-8 мкм 150-400 мэВ В этом диапазоне начинают излучать тела, нагретые до нескольких сотен градусов Цельсия. В этом диапазоне чувствительны тепловые головки самонаведения систем ПВО и технические тепловизоры .
Long-wavelength infrared, LWIR 8-15 мкм 80-150 мэВ В этом диапазоне начинают излучать тела с температурами около нуля градусов Цельсия. В этом диапазоне чувствительны тепловизоры для приборов ночного видения.
Far-infrared, FIR 15 - 1000 мкм 1.2-80 мэВ

CIE схема

Международная комиссия по освещённости (англ. International Commission on Illumination ) рекомендует разделение инфракрасного излучения на следующие три группы:

  • IR-A: 700 нм – 1400 нм (0.7 мкм – 1.4 мкм)
  • IR-B: 1400 нм – 3000 нм (1.4 мкм – 3 мкм)
  • IR-C: 3000 нм – 1 мм (3 мкм – 1000 мкм)

ISO 20473 схема

Тепловое излучение

Теплово́е излуче́ние или лучеиспускание - передача энергии от одних тел к другим в виде электромагнитных волн , излучаемых телами за счёт их внутренней энергии. Тепловое излучение в основном приходится на инфракрасный участок спектра от 0,74 мкм до 1000 мкм . Отличительной особенностью лучистого теплообмена является то, что он может осуществляться между телами, находящимися не только в какой-либо среде, но и вакууме . Примером теплового излучения является свет от лампы накаливания . Мощность теплового излучения объекта, удовлетворяющего критериям абсолютно чёрного тела , описывается законом Стефана - Больцмана . Отношение излучательной и поглощательной способностей тел описывается законом излучения Кирхгофа . Тепловое излучение является одним из трёх элементарных видов переноса тепловой энергии (помимо теплопроводности и конвекции). Равновесное излучение - тепловое излучение, находящееся в термодинамическом равновесии с веществом.

Применение

Прибор ночного видения

Существует несколько способов визуализировать невидимое инфракрасное изображение:

  • Современные полупроводниковые видеокамеры чувствительны в ближнем ИК. Во избежание ошибок цветопередачи обычные бытовые видеокамеры снабжаются специальным фильтром, отсекающим ИК изображение. Камеры для охранных систем, как правило, не имеют такого фильтра. Однако в темное время суток нет естественных источников ближнего ИК, поэтому без искусственной подсветки (например, инфракрасными светодиодами) такие камеры ничего не покажут.
  • Электронно-оптический преобразователь - вакуумный фотоэлектронный прибор, усиливающий свет видимого спектра и ближнего ИК. Имеет высокую чувствительность и способен давать изображение при очень низкой освещенности. Являются исторически первыми приборами ночного видения, широко используются и в настоящее время в дешевых ПНВ. Поскольку работают только в ближнем ИК, то, как и полупроводниковые видеокамеры, требуют наличия освещения.
  • Болометр - тепловой сенсор. Болометры для систем технического зрения и приборов ночного видения чувствительны в диапазоне длин волн 3..14 мкм (средний ИК), что соответствует излучению тел, нагретых от 500 до −50 градусов Цельсия. Таким образом, болометрические приборы не требуют внешнего освещения, регистрируя излучение самих предметов и создавая картинку разности температур.

Термография

Инфракрасная термография, тепловое изображение или тепловое видео - это научный способ получения термограммы - изображения в инфракрасных лучах, показывающего картину распределения температурных полей. Термографические камеры или тепловизоры обнаруживают излучение в инфракрасном диапазоне электромагнитного спектра (примерно 900-14000 нанометров или 0,9-14 µм) и на основе этого излучения создают изображения, позволяющие определить перегретые или переохлаждённые места. Так как инфракрасное излучение испускается всеми объектами, имеющими температуру, согласно формуле Планка для излучения чёрного тела , термография позволяет «видеть» окружающую среду с или без видимого света. Величина излучения, испускаемого объектом, увеличивается с повышением его температуры, поэтому термография позволяет нам видеть различия в температуре. Когда смотрим через тепловизор, то тёплые объекты видны лучше, чем охлаждённые до температуры окружающей среды; люди и теплокровные животные легче заметны в окружающей среде, как днём, так и ночью. Как результат, продвижение использования термографии может быть приписано военным и службам безопасности.

Инфракрасное самонаведение

Инфракрасная головка самонаведения - головка самонаведения , работающая на принципе улавливания волн инфракрасного диапазона, излучаемых захватываемой целью . Представляет собой оптико-электронный прибор , предназначенный для идентификации цели на окружающем фоне и выдачи в автоматическое прицельное устройство (АПУ) сигнала захвата, а также для измерения и выдачи в автопилот сигнала угловой скорости линии визирования.

Инфракрасный обогреватель

Передача данных

Распространение инфракрасных светодиодов, лазеров и фотодиодов позволило создать беспроводной оптический метод передачи данных на их основе. В компьютерной технике обычно используется для связи компьютеров с периферийными устройствами (интерфейс IrDA) В отличие от радиоканала инфракрасный канал нечувствителен к электромагнитным помехам , и это позволяет использовать его в производственных условиях. К недостаткам инфракрасного канала относятся необходимость в оптических окнах на оборудовании, правильной взаимной ориентации устройств, низкие скорости передачи (обычно не превышает 5-10 Мбит/с, но при использовании инфракрасных лазеров возможны существенно более высокие скорости). Кроме этого, не обеспечивается скрытность передачи информации. В условиях прямой видимости инфракрасный канал может обеспечить связь на расстояниях в несколько километров, но наиболее удобен он для связи компьютеров, находящихся в одной комнате, где отражения от стен комнаты дает устойчивую и надежную связь. Наиболее естественный тип топологии здесь - «шина» (то есть переданный сигнал одновременно получают все абоненты). Инфракрасный канал не смог получить широкого распространения, его вытеснил радиоканал.

Тепловое излучение применяется также для приема сигналов оповещения.

Дистанционное управление

Инфракрасные диоды и фотодиоды повсеместно применяются в пультах дистанционного управления , системах автоматики, охранных системах, некоторых мобильных телефонах (инфракрасный порт) и т. п. Инфракрасные лучи не отвлекают внимание человека в силу своей невидимости.

Интересно, что инфракрасное излучение бытового пульта дистанционного управления легко фиксируется с помощью цифрового фотоаппарата .

Медицина

Наиболее широко инфракрасное излучение в медицине находит в различных датчиках потока крови (PPG).

Широко распространенные измерители частоты пульса (ЧСС, HR - Heart Rate) и насыщения крови кислородом (Sp02) используют светодиоды зелёного (для пульса) и красного и инфракрасного (для SpO2) излучений.

Излучение инфракрасного лазера используется в методике DLS (Digital Light Scattering) для определения частоты пульса и характеристик потока крови.

Инфракрасные лучи применяются в физиотерапии .

Влияние длинноволнового инфракрасного излучения:

  • Стимуляция и улучшение кровообращения.При воздействии длинноволнового инфракрасного излучения на кожный покров происходит раздражение рецепторов кожи и, вследствие реакции гипоталамуса, расслабляются гладкие мышцы кровеносных сосудов, в результате сосуды расширяются.
  • Улучшение процессов метаболизма. При тепловом воздействии инфракрасного излучения стимулируется активность на клеточном уровне, улучшаются процессы нейрорегуляции и метаболизма.

Стерилизация пищевых продуктов

С помощью инфракрасного излучения стерилизируют пищевые продукты с целью дезинфекции.

Пищевая промышленность

Особенностью применения ИК-излучения в пищевой промышленности является возможность проникновения электромагнитной волны в такие капиллярно-пористые продукты, как зерно, крупа, мука и т. п. на глубину до 7 мм. Эта величина зависит от характера поверхности, структуры, свойств материала и частотной характеристики излучения. Электромагнитная волна определённого частотного диапазона оказывает не только термическое, но и биологическое воздействие на продукт, способствует ускорению биохимических превращений в биологических полимерах (

ИНФРАКРАСНОЕ ИЗЛУЧЕНИЕ (ИК-излучение, ИК-лучи), электромагнитное излучение с длинами волн λ от около 0,74 мкм до около 1-2 мм, то есть излучение, занимающее спектральную область между красным концом видимого излучения и коротковолновым (субмиллиметровым) радиоизлучением. Инфракрасное излучение относится к оптическому излучению, однако в отличие от видимого излучения оно не воспринимается человеческим глазом. Взаимодействуя с поверхностью тел, оно нагревает их, поэтому часто его называют тепловым излучением. Условно область инфракрасного излучения разделяют на ближнюю (λ = 0,74-2,5 мкм), среднюю (2,5-50 мкм) и далёкую (50-2000 мкм). Инфракрасное излучение открыто У. Гершелем (1800) и независимо У. Волластоном (1802).

Спектры инфракрасного излучения могут быть линейчатыми (атомные спектры), непрерывными (спектры конденсированных сред) или полосатыми (молекулярные спектры). Оптические свойства (коэффициенты пропускания, отражения, преломления и т.п.) веществ в инфракрасном излучении, как правило, значительно отличаются от соответствующих свойств в видимом или ультрафиолетовом излучении. Многие вещества, прозрачные для видимого света, непрозрачны для инфракрасного излучения определённых длин волн, и наоборот. Так, слой воды толщиной в несколько сантиметров непрозрачен для инфракрасного излучения с λ > 1 мкм, поэтому вода часто используется в качестве теплозащитного фильтра. Пластинки из Ge и Si, непрозрачные для видимого излучения, прозрачны для инфракрасного излучения определённых длин волн, чёрная бумага прозрачна в далёкой ИК-области (такие вещества используют в качестве светофильтров при выделении инфракрасного излучения).

Отражательная способность большинства металлов в инфракрасном излучении значительно выше, чем в видимом излучении, и возрастает с увеличением длины волны (смотри Металлооптика). Так, отражение поверхностей Al, Au, Ag, Cu инфракрасного излучения с λ = 10 мкм достигает 98%. Жидкие и твёрдые неметаллические вещества обладают селективным (зависящим от длины волны) отражением инфракрасного излучения, положение максимумов которого зависит от их химического состава.

Проходя через земную атмосферу, инфракрасное излучение ослабляется вследствие рассеяния и поглощения атомами и молекулами воздуха. Азот и кислород не поглощают инфракрасное излучение и ослабляют его лишь в результате рассеяния, которое для инфракрасного излучения значительно меньше, чем для видимого света. Молекулы Н 2 О, О 2 , О 3 и др., присутствующие в атмосфере, селективно (избирательно) поглощают инфракрасное излучение, причём особенно сильно поглощают инфракрасное излучение пары воды. Полосы поглощения Н 2 О наблюдаются во всей ИК-области спектра, а полосы СО 2 - в её средней части. В приземных слоях атмосферы имеется лишь небольшое число «окон прозрачности» для инфракрасного излучения. Наличие в атмосфере частиц дыма, пыли, мелких капель воды приводит к дополнительному ослаблению инфракрасного излучения в результате его рассеяния на этих частицах. При малых размерах частиц инфракрасное излучение рассеивается меньше, чем видимое излучение, что используют в ИК-фотографии.

Источники инфракрасного излучения. Мощный естественный источник инфракрасного излучения - Солнце, около 50% его излучения лежит в ИК-области. На инфракрасное излучение приходится от 70 до 80% энергии излучения ламп накаливания; его испускают электрическая дуга и различные газоразрядные лампы, все типы электрических обогревателей помещений. В научных исследованиях источниками инфракрасного излучения служат ленточные вольфрамовые лампы, штифт Нернста, глобар, ртутные лампы высокого давления и др. Излучение некоторых типов лазеров также лежит в ИК-области спектра (например, длина волны излучения лазеров на неодимовом стекле составляет 1,06 мкм, гелий-неоновых лазеров - 1,15 и 3,39 мкм, СО 2 -лазеров - 10,6 мкм).

Приёмники инфракрасного излучения основаны на преобразовании энергии излучения в другие виды энергии, доступные для измерения. В тепловых приёмниках поглощённое инфракрасное излучение вызывает повышение температуры термочувствительного элемента, которое и регистрируется. В фотоэлектрических приёмниках поглощение инфракрасного излучения приводит к появлению или изменению силы электрического тока или напряжения. Фотоэлектрические приёмники (в отличие от тепловых) селективны, то есть чувствительны лишь к излучению определённой области спектра. Фоторегистрация инфракрасного излучения осуществляется с помощью специальных фотоэмульсий, однако они чувствительны к нему только для длин волн до 1,2 мкм.

Применение инфракрасного излучения. ИК-излучение широко применяют в научных исследованиях и для решения различных практических задач. Спектры испускания и поглощения молекул и твёрдых тел лежат в ИК-области, их изучают в инфракрасной спектроскопии, в структурных задачах, а также используют в качественном и количественном спектральном анализе. В далёкой ИК-области лежит излучение, возникающее при переходах между зеемановскими подуровнями атомов, ИК-спектры атомов позволяют изучать структуру их электронных оболочек. Фотографии одного и того же объекта, полученные в видимом и инфракрасном диапазонах, вследствие различия коэффициентов отражения, пропускания и рассеяния могут значительно различаться; на ИК-фотографии можно увидеть детали, невидимые на обычной фотографии.

В промышленности инфракрасное излучение используют для сушки и нагрева материалов и изделий, в быту - для обогрева помещений. На основе фотокатодов, чувствительных к инфракрасному излучению, созданы электронно-оптические преобразователи, в которых не видимое глазом ИК-изображение объекта преобразуется в видимое. На основе таких преобразователей построены различные ночного видения приборы (бинокли, прицелы и т.п.), позволяющие в полной темноте обнаруживать объекты, вести наблюдение и прицеливание, облучая их инфракрасным излучением от специальных источников. При помощи высокочувствительных приёмников инфракрасного излучения осуществляют теплопеленгацию объектов по их собственному инфракрасному излучению и создают системы самонаведения на цель снарядов и ракет. ИК-локаторы и ИК-дальномеры позволяют обнаруживать в темноте предметы, температура которых выше температуры окружающей среды, и измерять расстояния до них. Мощное излучение ИК-лазеров используют в научных исследованиях, а также для осуществления наземной и космической связи, для лазерного зондирования атмосферы и т. д. Инфракрасное излучения используется для воспроизведения эталона метра.

Лит.: Шрайбер Г. Инфракрасные лучи в электронике. М., 2003; Тарасов В. В., Якушенков Ю. Г. Инфракрасные системы «смотрящего» типа. М., 2004.