Геометрическое тело состоящее из 6 граней называется. Многогранники. Виды многогранников и их свойства. I. Организационный момент

ГЕОМЕТРИЧЕСКИЕ ТЕЛА, ИХ ПОВЕРХНОСТИ И ОБЪЁМЫ

ГЕОМЕТРИЧЕСКОЕ ТЕЛО. МНОГОГРАННИК

Определение : Объединение ограниченной пространственной области и ее границы называется геометрическим телом.

Граница – поверхность геометрического тела.

Пространственная область – внутренняя область геометрического тела.

Определение : Многогранником называется геометрическое тело, поверхностью которого является конечное число многоугольников, каждая сторона любого многоугольника является стороной двух и только двух граней, не лежащих в одной плоскости. Многоугольники – грани многогранника.

Вершины и стороны граней – вершины и ребра многогранника.

Многогранники классифицируются по числу граней: тетраэдр (четырехгранник), пентаэдр (пятигранник), гексаэдр (шестигранник), октаэдр (восьмигранник), додекаэдр (двенадцатигранник), икосаэдр (двадцатигранник).

Определение : Диагональю многогранника называется отрезок, соединяющий две вершины, не принадлежащие одной грани.

ПРИЗМА. ПАРАЛЛЕЛЕПИПЕД

Определение : Многогранник, две грани которого многоугольники, принадлежащие параллельным плоскостям, а остальные грани – параллелограммы, называется призмой. Многоугольники, принадлежащие параллельным плоскостям – основания призмы. Параллелограммы – боковые грани призмы.

Стороны параллелограммов, соединяющие соответствующие вершины оснований призмы – боковые ребра призмы.

А 1 А 2 …А п В 1 В 2 …В п – п-угольная призма;

А 1 А 2 …А п; В 1 В 2 …В п – основания п-угольной призмы;

А 1 В 1 В 2 А 2 ; …; А 1 В 1 В п А п – боковые грани п-угольной призмы;

А 1 В 1 ; А 2 В 2 ; … ; А п В п – боковые ребра п-угольной призмы.

Свойства :

Основания призмы равны и параллельны.



Боковые ребра призмы равны и параллельны.

Определение : Призма называется прямой, если ее боковые ребра перпендикулярны к основаниям (Рис.1.), в противном случае призма называется наклонной (Рис. 2.).


Рис.1. Рис. 2. Рис.3.

Призма называется треугольной, четырехугольной, пятиугольной, … в зависимости от того, какой многоугольник лежит в ее основании.

Определение : Перпендикуляр, проведенный из какой- либо точки одного основания к плоскости другого основания, называется высотой призмы (Рис. 3.).

В 1 М ^ А 1 А 2 А 3 ; О 1 О 2 ^ А 1 А 2 А 3 ;

В 1 М = О 1 О 2 = h – высота призмы.

Замечание : Высота прямой призмы равна ее боковому ребру.

Определение : Прямая призма называется правильной, если ее основаниями являются правильные многоугольники.

Замечание : Боковые грани правильной призмы – равные прямоугольники.

Справка :

1. Правильный четырехугольник – квадрат;

2. Правильный треугольник – равносторонний треугольник;

3. Правильный шестиугольник.

Определение : Призма, основанием которой является параллелограмм, называется параллелепипедом (Рис. 1.).

Определение : Прямым параллелепипедом называется параллелепипед, боковые ребра которого перпендикулярны основаниям (Рис. 2.).


Свойства :

  1. Противоположные грани параллелепипеда равны и параллельны.
  2. Диагонали параллелепипеда пересекаются и точкой пересечения делятся пополам.
  3. В прямоугольном параллелепипеде квадрат любой диагонали равен сумме квадратов его линейных размеров. d 2 = а 2 + b 2 + с 2
  4. Диагонали прямоугольного параллелепипеда равны.


Упражнения :

  1. Определить диагонали прямоугольного параллелепипеда по его измерениям:

a) 8, 9, 12;

B) 12, 16, 21.

Справка : Сумма квадратов диагоналей параллелограмма равна сумме квадратов всех его сторон.

  1. В прямом параллелепипеде стороны основания равны 5 см и 3 см, а одна из диагоналей равна 4 см. Найти большую диагональ параллелепипеда, зная, что меньшая диагональ, образует с плоскостью основания угол 60°.
  2. В правильной четырехугольной призме площадь основания равна 144 см 2 , а высота равна 14 см. Определить диагональ этой призмы.

ПОВЕРХНОСТЬ ПРИЗМЫ

Определение : Площадью полной поверхности призмы называется сумма площадей всех ее граней.

Определение : Площадью боковой поверхности призмы называется сумма площадей ее боковых граней.

Определение : Перпендикулярным сечением призмы называется многоугольник, полученный при пересечении призмы плоскостью, перпендикулярной ее ребрам.

Теорема : Площадь боковой поверхности призмы равна произведению бокового ребра на периметр перпендикулярного сечения.


Дано :

АВСDА 1 В 1 С 1 D 1 – призма;

А А 1 = l;

l ^ КLMNP;

Р ^ = Р(КLMNP)

Доказать :


Следствие : Площадь боковой поверхности прямой призмы равна произведению периметра ее основания на высоту.

; ;

Упражнения :

Дана наклонная треугольная призма, две боковые грани которой взаимно перпендикулярны, их общее ребро равно 9,6 см и находится на расстоянии 4,8 см и 14 см от двух других рёбер. Найти площадь боковой поверхности призмы.

6. В прямоугольном параллелепипеде его измерения относятся как 1:2:3 (3:7:8). Площадь полной поверхности параллелепипеда равна 352 см 2 . Найти его измерения.

7. Найти площадь полной поверхности прямого параллелепипеда, стороны основания которого равны 8 дм и 12 дм и образуют угол 30°, а боковое ребро равно 6 дм.

8. Площадь полной поверхности куба равна 36 см 2 . Определить его диагональ.

9. Найти ребро куба, если площадь его полной поверхности равна 24 м 2 .

В прямом параллелепипеде стороны основания равны 10 см и 17 см, одна из диагоналей основания равна 21 см. Большая диагональ параллелепипеда равна 29 см. Определить площадь полной поверхности параллелепипеда.

15. В прямом параллелепипеде стороны основания равны 3 см и 8 см, угол между ними равен 60°. Площадь боковой поверхности параллелепипеда равна 220 см 2 . Определить площадь полной поверхности параллелепипеда, площадь меньшего диагонального сечения.

16. Диагональ правильной четырехугольной призмы равна 9 см. Площадь полной поверхности призмы равна 144 см 2 . Определить сторону основания и боковое ребро призмы.

ОБЪЕМ ПРЯМОЙ ПРИЗМЫ

ОСНОВНЫЕ СВОЙСТВА ОБЪЕМОВ

  1. Два равных многогранника имеют один и тот же объём, независимо от их расположения в пространстве.
  2. Объём многогранника, представляющего собой сумму двух смежных многогранников, равен сумме объёмов этих многогранников.
  3. Если из двух многогранников первый целиком содержится внутри второго, то объём первого многогранника не превосходит объёма второго многогранника.

Определение : Многогранники, имеющие равные объёмы, называются равновеликими.

Определение : За единицу объёма принимается объём куба, ребро которого равно единице длины.


ОБЪЁМ ПРЯМОЙ ПРИЗМЫ

Теорема : Объём прямоугольного параллелепипеда равен произведению его линейных размеров.

линейные размеры (измерения)

Теорема : Объём прямой призмы равен произведению площади основания на высоту призмы.

Дано :

ABCA 1 B 1 C 1 – прямая призма;

– основание призмы;

; ;

ОБЪЁМ НАКЛОННОЙ ПРИЗМЫ

Теорема : Объём наклонной призмы равен произведению площади перпендикулярного сечения призмы на её боковое ребро.

Дано :

- наклонная призма;

- боковое ребро;

- перпендикулярное сечение;

Доказать :

Следствие : Объём наклонной призмы равен произведению площади основания на высоту призмы.

Упражнения :

1. В наклонном параллелепипеде стороны перпендикулярного сечения, равные 3 см и 4 см, образуют между собой угол 30°. Боковое ребро параллелепипеда равно 1 дм. Найти объём параллелепипеда.

2. Основанием призмы является правильный треугольник со стороной 4 см. Боковое ребро призмы равно 6 см и составляет с плоскостью основания угол 60°. Найти объём призмы и площадь перпендикулярного сечения призмы.

3. Основанием прямого параллелепипеда является параллелограмм, один из углов которого равен 30°. Площадь основания параллелепипеда равна 16 дм 2 . Площади боковых граней параллелепипеда равны 24 дм 2 и 48 дм 2 . Найти объём параллелепипеда.

4. В прямоугольном параллелепипеде стороны основания относятся как 7:24, а площадь диагонального сечения равна 50 см 2 . Найти площадь боковой поверхности параллелепипеда.

5. В основании прямой призмы лежит ромб со стороной а и углом 60 ° . Сечение, проведённое через большую диагональ основания и вершину тупого угла другого основания, есть прямоугольный треугольник. Найти площадь полной поверхности призмы.

6. Площади боковых граней прямой треугольной призмы равны 425 см 2 , 250 см 2 , 225 см 2 , а площадь основания призмы равна 100 см 2 . Найти объём призмы.

7. Дан наклонный параллелепипед, основание которого – квадрат со стороной 5 дм. Найти объём параллелепипеда, если одно из боковых рёбер образует с каждой прилежащей стороной основания угол 60 ° и равно 1 м.

Основанием прямой призмы является равнобедренный треугольник, боковая сторона которого равна 1 м, а основание 1 м 20 см. Боковое ребро призмы равно высоте основания, опущенной на его боковую сторону. Найти площадь полной поверхности призмы.

Рис. 1. Рис. 2.

Упражнения :

  1. Основанием пирамиды является прямоугольник со сторонами 12 см и 16 см. Каждое боковое ребро пирамиды равно 26 см. Найти высоту пирамиды.
  2. Основанием пирамиды является параллелограмм со сторонами 3 см и 7 см и диагональю 6 см. Высота пирамиды равна 4 см и проходит через точку пересечения диагоналей параллелограмма. Найти боковые рёбра пирамиды.
  3. Высота правильной четырёхугольной пирамиды равна 7 см, а сторона основания равна 8 см. Найти боковое ребро пирамиды.
  4. Основание пирамиды – равнобедренный треугольник, у которого основание равно 6 см и высота равна 9 см. Боковые рёбра пирамиды равны между собой и каждое содержит 13 см. Найти высоту пирамиды.
  5. Основание пирамиды – равнобедренный треугольник с основанием 12 см и боковой стороной 10 см. Боковые грани пирамиды образуют с основанием равные двугранные углы по 45° . Найти высоту пирамиды.

Точка О одинаково удалена от вершин треугольника АВС, следовательно, она является центром окружности, описанной около этого треугольника. Центр окружности, описанной около прямоугольного треугольника, есть середина гипотенузы. Точка О - середина гипотенузы.

.

; .

; ; ; ; .

; , следовательно, .

- равносторонний треугольник, значит, .

; .

по трём сторонам, следовательно, .

;

; ;

;

.

Ответ : .

Замечание : Площадь боковой поверхности неправильнойусечённой пирамиды вычисляется по определению, каксумма площадей её боковых граней.

Упражнения :

ОБЪЁМ ПИРАМИДЫ

Теорема : Объём пирамиды равен одной трети произведения площади основания пирамиды на её высоту.

Дано :

SABC - пирамида;

S(ABC)= S осн.

SО ^ АВС; SО = h.

Доказать :

9. ОБЪЁМ УСЕЧЕННОЙ ПИРАМИДЫ

Дано :

ABCDA 1 B 1 C 1 D 1 - усечённая пирамида;

S(ABCD) = S н.о. ; S (A 1 B 1 C 1 D 1) = S в.о.

h - высота усечённой пирамиды;

Определить: V ус.пир. - ?

.

Упражнения :

  1. Диагональ квадратного основания правильной пирамиды равна 6 см, высота пирамиды равна 15 см. Найти её объём.
  2. Боковое ребро правильной шестиугольной пирамиды равно 14 дм, сторона её основания равна 2 дм. Найти объём пирамиды.
  3. Основанием пирамиды является ромб со стороной 15 см. Боковые грани пирамиды наклонены к плоскости основания под углом 45°. Большая диагональ основания равна 24 см. Найти объём пирамиды.
  4. Найти объём усечённой пирамиды, если площади её оснований равны 98 см 2 и 32 см 2 , а высота соответствующей полной пирамиды равна 14 см.
  5. В пирамиде через середину высоты проведена плоскость, параллельная её основанию. Определить объём образовавшейся усечённой пирамиды, если высота данной пирамиды равна 18 см, а площадь её основания равна 400 см 2 .
  6. Найти объём треугольной пирамиды, боковые рёбра которой попарно перпендикулярны и равны 10 см, 15 см, 9 см.
  7. В треугольной усечённой пирамиде высота равна 10 см, стороны нижнего основания равны 27 м, 29 м, 52 м, а периметр верхнего основания равен 72 м. Найти объём усечённой пирамиды.
  8. Стороны оснований правильной четырёхугольной усечённой пирамиды равны 40 см и 10 см. Площадь её полной поверхности равна 3400 см 2 . Найти объём усечённой пирамиды.

ЦИЛИНДР. ПОВЕРХНОСТЬ И ОБЪЕМ ЦИЛИНДРА.

Определение : Геометрическое тело, полученное при вращении прямоугольника вокруг одной из его сторон, называется прямым круговым цилиндром.

Определение : Цилиндр называется прямым, если его образующие перпендикулярны плоскостям оснований.

AB – ось симметрии, высота цилиндра;AB = H ;

AD – радиус основания цилиндра;AD = R .

Определение : Расстояние между плоскостями оснований является высотой прямого кругового цилиндра.

Радиусом цилиндра называется радиус его основания. Осью цилиндра называется прямая, проходящая через центры оснований. Она параллельна образующим.

Два круга являются основаниями прямого кругового цилиндра. Отрезок, соединяющий точки окружностей оснований и перпендикулярный плоскостям оснований, называется образующей прямого кругового цилиндра.

Определение : Прямоугольник, одна сторона которого равна длине окружности основания цилиндра, а другая – его высоте, называется разверткой боковой поверхности цилиндра.

Поверхность цилиндра состоит из оснований и боковой поверхности. Боковая поверхность составлена из образующих.

В дальнейшем мы будем рассматривать только прямой цилиндр, называя его для краткости просто цилиндром.

Определение : Цилиндр называется равносторонним, если его высота равна диаметру основания.

Сечения цилиндра.

Сечение цилиндра плоскостью, параллельной его оси, представляет собой прямоугольник. Две его стороны − образующие цилиндра, а две другие − параллельные хорды оснований.

В частности, прямоугольником является осевое сечение. Осевое сечение - сечение цилиндра плоскостью, проходящей через его ось.

Сечение цилиндра плоскостью, параллельной основанию − круг.

Сечение цилиндра плоскостью не параллельной основанию и его оси – овал.

Теорема : Площадь боковой поверхности цилиндра равна произведению длины окружности его основания на высоту (S бок. = 2πRH , где R − радиус основания цилиндра, Н − высота цилиндра).

Определение : Площадью полной поверхности цилиндра называется сумма площадей боковой поверхности и двух оснований.

S осн. = πR 2 S бок. = 2πRH S полн. = 2πRH + 2πR 2 .

Рассмотрим п -угольную прямую призму. При п→∞ периметр многоугольника, лежащего в основании призмы, будет стремиться к длине окружности основания цилиндра, площадь многоугольника, лежащего в основании призмы, будет стремиться к площади круга, являющегося основанием цилиндра. Объём п -угольной прямой призмы будет стремиться к объёму прямого кругового цилиндра.

Определение : Призма называется вписанной в цилиндр, если её основания вписаны в основания цилиндра.

Определение : Цилиндр называется вписанным в призму, если его основания вписаны в основания призмы.

Упражнения :

1. Диагональ осевого сечения цилиндра равна 48 см. Угол между этой диагональю и образующей цилиндра равен 60°. Найти: высоту, радиус основания, площадь основания цилиндра.

2. Площадь осевого сечения цилиндра равна 10 см 2 , а площадь основания - 5 см 2 . Найти высоту цилиндра.

3. Радиус основания цилиндра равен 4 см, а площадь его осевого сечения равна 72 см 2 . Найти объём цилиндра.

Квадрат со стороной, равной а, вращается вокруг внешней оси, которая параллельна его стороне. Ось удалена от квадрата на расстояние, равное стороне квадрата. Найти площадь полной поверхности и объём тела вращения.

11. В ос­но­ва­нии пря­мой приз­мы лежит квад­рат со сто­ро­ной 2. Бо­ко­вые ребра равны

12. В ос­но­ва­нии пря­мой приз­мы лежит пря­мо­уголь­ный тре­уголь­ник с ка­те­та­ми 6 и 8. Бо­ко­вые ребра равны . Най­ди­те объем ци­лин­дра, опи­сан­но­го около этой приз­мы.

13. Най­ди­те объем части ци­лин­дра, изоб­ра­жен­ной на ри­сун­ке №1.

14. Най­ди­те объем части ци­лин­дра, изоб­ра­жен­ной на ри­сун­ке №2.

Рис. №1. Рис. №2.

КОНУС. ПОВЕРХНОСТЬ И ОБЪЁМ КОНУСА.

Конус (с греческого «konos») – сосновая шишка.

Конус знаком людям с глубокой древности. В 1906 году была обнаружена книга «О методе», написанная Архимедом (287-212 гг. до н. э.), в этой книге дается решение задачи об объеме общей части пересекающихся цилиндров. Архимед говорит, что это открытие принадлежит древнегреческому философу Демокриту (470-380 гг. до н.э.), который с помощью данного принципа получил формулы для вычисления объема пирамиды и конуса.

Круговым конусом называется тело, которое состоит из круга - основания конуса, точки, не лежащей в плоскости этого круга,- вершины конуса и всех отрезков, соединяющих вершину конуса с точками основания (рис. 1) Отрезки, соединяющие вершину конуса с точками окружности основания, называются образующими конуса .

Конус называется прямым , если прямая, соединяющая вершину конуса с центром основания, перпендикулярна плоскости основания.

У прямого конуса основание высоты совпадает с центром основания. Осью прямого конуса называется прямая, содержащая его высоту.

Определение : Геометрическое тело, полученное при вращении прямоугольного треугольника вокруг одного из катетов, называется прямым круговым конусом.

Определение : Высотой конуса называется перпендикуляр, опущенный из его вершины на плоскость основания.

Определение : Разверткой боковой поверхности конуса называется сектор круга, радиус которого равен образующей конуса, а длина дуги – длине окружности основания конуса.

Сечения конуса.

Плоскость, перпендикулярная оси конуса, пересекает конус по кругу, а боковую поверхность – по окружности с центром на оси конуса.

Плоскость, перпендикулярная оси конуса отсекает от него меньший конус. Оставшаяся часть называется усечённым конусом.

Сечение конуса плоскостью, проходящей через его вершину, представляет собой равнобедренный треугольник, у которого боковые стороны являются образующими конуса.

Определение : Осевым сечением конуса называется сечение, проходящее через ось конуса.

Вывод : Осевое сечение конуса – это равнобедренный треугольник, основанием которого является диаметр основания конуса, а боковые стороны – образующие конуса.

Поверхность конуса состоит из основания и боковой поверхности.

Площадь боковой поверхности конуса можно найти по формуле:

S бок. = πRL, где R – радиус основания, L – длина образующей.

Площадь полной поверхности конуса находится по формуле:

S полн. = πRL + πR 2 , где R – радиус основания, L – длина образующей.

Объём кругового конуса равен V = 1/3 πR 2 H, где R – радиус основания, Н – высота конуса.

Определение : Пирамидой, вписанной в конус, называется такая пирамида, основание которой есть многоугольник, вписанный в окружность основания конуса, а вершиной является вершина конуса. Боковые ребра пирамиды, вписанной в конус, являются образующими конуса.

Определение : Пирамидой, описанной около конуса , называется пирамида, у которой основанием служит многоугольник, описанный около основания конуса, а вершина совпадает с вершиной конуса.

Упражнения :

1. Равнобедренный треугольник с углом при вершине 120 ° и боковой стороной в 20 см вращается вокруг основания. Найти объём тела вращения.

2. Найти высоту конуса, если площадь его боковой поверхности равна 427,2 см 2 и образующая – 17 см.

Прямоугольный треугольник, катеты которого равны 3 см и 4 см, вращается вокруг оси, параллельной гипотенузе и проходящей через вершину прямого угла. Найти площадь полной поверхности и объём тела вращения.

УСЕЧЕННЫЙ КОНУС. ПОВЕРХНОСТЬ И ОБЪЁМ УСЕЧЕННОГО КОНУСА

Определение : Усечённым конусом называется часть конуса, заключённая между его основанием и сечением, параллельным основанию. Круги, лежащие в параллельных плоскостях, называются основаниями усеченного конуса.

Определение : Геометрическое тело, полученное при вращении прямоугольной трапеции вокруг её боковой стороны, перпендикулярной основаниям, называется прямым круговым усечённым конусом.

Определение : Образующей усеченного конуса называется часть образующей полного конуса, заключенная между основаниями.

Определение : Высотой усеченного конуса называется расстояние между его основаниями.

Задача : Пусть дан усеченный конус, радиусы оснований и высота которого известны: r = 5, R = 7, Н = Ö60. Найдите образующую усеченного конуса.

Определение : Прямая, соединяющая центры оснований, называется осью усеченного конуса. Сечение, проходящее через ось, называется осевым. Осевое сечение является равнобедренной трапецией.

Задача : Найдите площадь осевого сечения, если известны радиус верхнего основания, высота и образующая: R = 6, Н = 4, L = 5.

Площадь боковой поверхности усеченного конуса можно найти по формуле:

S бок = π(R + r)L ,

где R – радиус нижнего основания, r L – длина образующей.

Площадь полной поверхности усеченного конуса можно найти по формуле:

S полн. = πR 2 + πr 2 + π(R + r)L ,

где R – радиус нижнего основания, r – радиус верхнего основания, L – длина образующей.

Объём усечённого конуса можно найти следующим образом:

V = 1/3 πH(R 2 + Rr + r 2) ,

где R – радиус нижнего основания, r – радиус верхнего основания, Н – высота конуса.

Упражнения :

Из истории возникновения.

Шаром принято называть тело, ограниченное сферой, т.е. шар и сфера – это разные геометрические тела. Однако оба слова « шар» и « сфера» происходят от одного и того же греческого слова « сфайра» - мяч. При этом слово « шар» образовалось от перехода согласных сф в ш. В XI книге «Начал» Евклид определяет шар как фигуру, описанную вращающимся около неподвижного диаметра полукругом. В древности сфера была в большом почёте. Астрономические наблюдения над небесным сводом неизменно вызывали образ сферы. Сфера всегда широко применялось в различных областях науки и техники.

Определение : Геометрическое тело, полученное при вращении полукруга вокруг его диаметра, называется шаром.

Определение : Радиусом сферы (шара) называется отрезок, соединяющий центр сферы (шара) с любой её точкой.

Определение : Хордой сферы называется отрезок, соединяющий две любые её точки.

Определение : Диаметром сферы называется хорда, проходящая через её центр.

Сечение шара плоскостью.

Любое сечение шара плоскостью есть круг. Центр этого круга – основание перпендикуляра, опущенного из центра шара на секущую плоскость. Сечение, проходящее через центр шара, называется диаметральным сечением (большим кругом).

Касательная плоскость к сфере .

Плоскость, имеющая со сферой только одну общую точку, называется касательной плоскостью к сфере, а их общая точка называется точкой касания плоскости и сферы.

3 4 6 12 8 O h 3 5 12 30 20 I h Гексаэдр или куб 4 3 8 12 6 O h 5 3 20 30 12 I h

Название каждого многогранника происходит от греческого названия количества его граней и слова "грань".

Комбинаторные свойства

  • Эйлером была выведена формула, связывающая число вершин (В), граней (Г) и рёбер (Р) любого выпуклого многогранника простым соотношением : В + Г = Р + 2.
  • Отношение количества вершин правильного многогранника к количеству рёбер одной его грани равно отношению количества граней этого же многогранника к количеству рёбер, выходящих из одной его вершины. У тетраэдра это отношение равно 4:3, у гексаэдра и октаэдра - 2:1, а у додекаэдра и икосаэдра - 4:1.
  • Правильный многогранник может быть комбинаторно описан символом Шлефли {p , q }, где: p - число сторон каждой грани; q - число рёбер, сходящихся в каждой вершине.
Символы Шлефли для правильных многогранников приведены в следующей таблице:
Многогранник Вершины Рёбра Грани Символ Шлефли
тетраэдр 4 6 4 {3, 3}
куб 8 12 6 {4, 3}
октаэдр 6 12 8 {3, 4}
додекаэдр 20 30 12 {5, 3}
икосаэдр 12 30 20 {3, 5}
Из этих соотношений и формулы Эйлера можно получить следующие выражения для В, Р и Г:

Геометрические свойства Углы

С каждым правильным многогранником связаны определённые углы , характеризующие его свойства. Двугранный угол между смежными гранями правильного многогранника {p, q} задаётся формулой:

Иногда удобнее пользоваться выражением через тангенс :

где принимает значения 4, 6, 6, 10 и 10 для тетраэдра, куба, октаэдра, додекаэдра и икосаэдра соответственно.

Угловой дефект при вершине многогранника – это разность между 2π и суммой углов между рёбрами каждой грани при этой вершине. Дефект при любой вершине правильного многогранника:

Многогранник Двугранный угол
θ
Плоский угол между рёбрами при вершине Угловой дефект (δ) Телесный угол при вершине (Ω) Телесный угол, стягиваемый гранью
тетраэдр 70.53° 60° π π
куб 90° 1 90°
октаэдр 109.47° √2 60°, 90°
додекаэдр 116.57° 108°
икосаэдр 138.19° 60°, 108°

Радиусы, площади и объёмы

С каждым правильным многогранником связаны три концентрические сферы:

  • Описанная сфера, проходящая через вершины многогранника;
  • Срединная сфера, касающаяся каждого его ребра в середине;
  • Вписанная сфера, касающаяся каждой его грани в её центре.

Радиусы описанной () и вписанной () сфер задаются формулами:

где θ - двугранный угол между смежными гранями многогранника. Радиус срединной сферы задаётся формулой:

где h - величина описанная выше, при определении двугранных углов (h = 4, 6, 6, 10 или 10). Отношения описанных радиусов к вписанным радиусам симметрично относительно p и q:

Площадь поверхности S правильного многогранника {p, q} вычисляется, как площадь правильного p-угольника, умноженная на число граней Г:

Объём правильного многогранника вычисляется, как умноженный на число граней объём правильной пирамиды , основанием которой служит правильный p-угольник, а высотой - радиус вписанной сферы r:

Приведённая таблица содержит список различных радиусов, площадей поверхностей и объёмов правильных многогранников. Значение длины ребра a в таблице приравнены к 2.

Многогранник
(a = 2)
Радиус вписанной сферы (r ) Радиус срединной сферы (ρ) Радиус описанной сферы (R )

Константы φ и ξ задаются выражениями

Среди правильных многогранников как додекаэдр, так и икосаэдр представляют собой лучшее приближение к сфере. Икосаэдр имеет наибольшее число граней, наибольший двугранный угол и плотнее всего прижимается к своей вписанной сфере. С другой стороны, додекаэдр имеет наименьший угловой дефект, наибольший телесный угол при вершине и максимально заполняет свою описанную сферу.

ТЕОРИЯ МНОГОГРАННИКОВ

Гранные геометрические тела

Гранным геометрическим телом или многогранником называют часть пространства, ограниченную совокупностью конечного числа плоских многоугольников, соединенных таким образом, что каждая сторона любого многоугольника является стороной другого одного многоугольника (называемого смежным), причем вокруг каждой вершины существует один цикл многоугольников. Упрощая вышеизложенное определение, получаем определение многогранника, знакомое из школьного учебника.

Многогранник - геометрическое тело, ограниченное со всех сторон плоскими многоугольниками, называемыми гранями. Стороны граней называются ребрами многогранника, а концы ребер - вершинами многогранника.

Из истории

Греческая математика, в которой впервые появилась теория многогранников, развивалась под большим влиянием знаменитого мыслителя Платона.

Платон (427–347 до н.э.) – великий древнегреческий философ, основатель Академии и родоначальник традиции платонизма. Одним из существенных черт его учения является рассмотрение идеальных объектов - абстракций. Математика, взяв на вооружение идеи Платона, со времен Евклида изучает именно абстрактные, идеальные объекты. Однако и сам Платон, и многие древние математики вкладывали в термин идеальный не только смысл абстрактный, но и смысл наилучший. В соответствии с традицией, идущей от древних математиков, среди всех многогранников лучшие те, которые имеют своими гранями правильные многоугольники.

Многогранники можно классифицировать по нескольким признакам: например, по числу граней различают четырехгранники, пятигранники и т. д.

Различают правильные и полуправильные многогранники. Правильными называют такие многогранники, у которых все грани - правильные равные многоугольники и все углы при вершинах равны. Если гранями многогранника являются различные правильные многоугольники, то получается многогранник, который называется полуправильным (равноугольно полуправильным). Полуправильным многогранником называется выпуклый многогранник, гранями которого являются правильные многоугольники (возможно, и с разным числом сторон), и все многогранные углы равны.

Кроме правильных и полуправильных многогранников красивые формы имеют так называемые правильные звездчатые многогранники. Они получаются из правильных многогранников продолжением граней или ребер аналогично тому, как правильные звездчатые многоугольники получаются продолжением сторон правильных многоугольников.

Из множества многогранников выделим наиболее известные: призму и пирамиду (рис. 1).

Призмой называют многогранник, у которого две одинаковые взаимно параллельные грани - основания, а остальные - боковые грани – параллелограммы.

Пирамида представляет собой многогранник, у которого одна грань - произвольный многоугольник - принимается за основание, а остальные грани (боковые) - треугольники с общей вершиной, называемой вершиной пирамиды.

На рис. 2 представлены несколько призм и пирамид. Пирамида, основание которой имеет форму треугольника, называется треугольной пирамидой. Так, можно говорить о квадратных, пятиугольных и т.д. пирамидах рис. 2, а и 2, б . Основанием треугольной пирамиды может служить любая грань.

На рис. 2, в, 2, г и 2, д приведены примеры некоторого класса многогранников, вершины которых можно разделить на два множества из одинакового числа точек; точки каждого из этих множеств являются вершинами р-угольника, причем плоскости обоих p-угольников параллельны. Если эти два р-угольника (основания) конгруэнтны и расположены так, что вершины одного р-угольника соединены с вершинами другого р-угольника параллельными прямолинейными отрезками, то такой многогранник называется р-угольной призмой. Примерами двух р-угольных призм могут служить треугольная призма (р = 3) на рис. 2, в и пятиугольная призма (р = 5) на рис. 2, г . Если же основания расположены так, что вершины одного р-угольника соединены с вершинами другого р-угольника зигзагообразной ломаной, состоящей из 2р прямолинейных отрезков, как на рис. 2, д , то такой многогранник называется р-угольной антипризмой.

Кроме двух оснований, у р-угольной призмы имеются р граней - параллелограммов. Если параллелограммы имеют форму прямоугольников, то призма называется прямой. У такой призмы ребра боковых граней перпендикулярны основанию. Призму, у которой основания не параллельны, называют усеченной.

2. Правильные многогранники. Выпуклый многогранник называется правильным, если он удовлетворяет следующим двум условиям:

Все его грани - конгруэнтные правильные многоугольники;

К каждой вершине примыкает одно и то же число граней.

Если все грани правильного многогранника правильные многоугольники, то в правильных многогранниках все плоские, многогранные и двугранные углы равны.

Если все грани - правильные р-угольники и q из них примыкают к каждой вершине, то такой правильный многогранник обозначается {p, q}. Первое число в скобках указывает, сколько сторон у каждой грани, второе - число граней, примыкающих к каждой вершине. Это обозначение было предложено Л. Шлефли (1814-1895), швейцарским математиком, которому принадлежит немало изящных результатов в геометрии и математическом анализе. Существуют невыпуклые многогранники, у которых грани пересекаются и которые называются "правильными звездчатыми многогранниками". В геометрии условно под правильными многогранниками понимают исключительно выпуклые правильные многогранники

Правильные многогранники иногда называют Платоновыми телами, поскольку они занимают видное место в философской картине мира, разработанной великим мыслителем Древней Греции Платоном.

Существует 5 видов правильных многогранников: тетраэдр, куб, октаэдр, додекаэдр, икосаэдр.

ТЕТРАЭДР – правильный многогранник, поверхность которого состоит из четырех правильных треугольников.

ГЕКСАЭДР (КУБ) – правильный многогранник, поверхность которого состоит из шести правильных четырехугольников (квадратов

ОКТАЭДР – правильный многогранник, поверхность которого состоит из восьми правильных треугольников.

ДОДЕКАЭДР – правильный многогранник, поверхность которого состоит из двенадцати правильных пятиугольников.

ИКОСАЭДР – правильный многогранник, поверхность которого состоит из двадцати правильных треугольников.

Названия этих многогранников пришли из Древней Греции, и в них указывается число граней:

«эдра» - грань;

«тетра» - 4;

«гекса» - 6;

«окта» - 8;

«икоса» - 20;

«додека» - 12.

На рис. 3 изображены правильные многогранники

Из истории

Платон считал, что мир строится из четырёх «стихий» - огня, земли, воздуха и воды, а атомы этих «стихий» имеют форму четырёх правильных многогранников. Тетраэдр олицетворял огонь, поскольку его вершина устремлена вверх, как у разгоревшегося пламени; икосаэдр – как самый обтекаемый – воду; куб – самая устойчивая из фигур – землю, а октаэдр – воздух. В наше время эту систему можно сравнить с четырьмя состояниями вещества - твёрдым, жидким, газообразным и пламенным. Пятый многогранник – додекаэдр символизировал весь мир и почитался главнейшим. Это была одна из первых попыток ввести в науку идею систематизации.

Древние греки рассматривали додекаэдр как форму Вселенной. Ими исследовались также и многие геометрические свойства платоновых тел; с плодами их изысканий можно ознакомиться по 13-й книге Начал Евклида.

Изучение платоновых тел и связанных с ними фигур продолжается и поныне. И хотя основными мотивами современных исследований служат красота и симметрия, они имеют также и некоторое научное значение, особенно в кристаллографии. Кристаллы поваренной соли, тиоантимонида натрия и хромовых квасцов встречаются в природе в виде куба, тетраэдра и октаэдра соответственно. Икосаэдр и додекаэдр среди кристаллических форм не встречаются, но их можно наблюдать среди форм микроскопических морских организмов, известных под названием радиолярий.

Свойства правильных многогранников . Вершины любого правильного многогранника лежат на сфере (что вряд ли вызовет удивление, если вспомнить, что вершины любого правильного многоугольника лежат на окружности). Помимо этой сферы, называемой "описанной сферой", имеются еще две важные сферы. Одна из них, "срединная сфера", проходит через середины всех ребер, а другая, "вписанная сфера", касается всех граней в их центрах. Все три сферы имеют общий центр, который называется центром многогранника.

Число правильных многогранников . Естественно спросить, существуют ли кроме платоновых тел другие правильные многогранники.

Платоновы тела - трехмерный аналог плоских правильных многоугольников. Однако между двумерным и трехмерным случаями есть важное отличие: существует бесконечно много различных правильных многоугольников, но лишь пять различных правильных многогранников. Доказательство этого факта известно уже более двух тысяч лет; этим доказательством и изучением пяти правильных тел завершаются Начала Евклида

Как показывают следующие простые соображения, ответ должен быть отрицательным. Пусть {p, q} - произвольный правильный многогранник. Так как его гранями служат правильные р-угольники, их внутренние углы, как нетрудно показать, равны (180 - 360/р) или 180 (1 - 2/р) градусам. Так как многогранник {p, q} выпуклый, сумма всех внутренних углов по граням, примыкающим к любой из его вершин, должна быть меньше 360 градусов. Но к каждой вершине примыкают q граней, поэтому должно выполняться неравенство.

где символ < означает "меньше чем". После несложных алгебраических преобразований полученное неравенство приводится к виду

Нетрудно видеть, что p и q должны быть больше 2. Подставляя в (1) р = 3, мы обнаруживаем, что единственными допустимыми значениями q в этом случае являются 3, 4 и 5, т.е. получаем многогранники {3, 3}, {3, 4} и {3, 5}. При р = 4 единственным допустимым значением q является 3, т.е. многогранник {4, 3}, при р = 5 неравенству (1) также удовлетворяет только q = 3, т.е. многогранник {5, 3}. При p > 5 допустимых значений q не существует. Следовательно, других правильных многогранников, кроме тел Платона, не существует.

3. Полуправильные многогранники. Выше мы рассмотрели правильные многогранники, т.е. такие выпуклые многогранники, гранями которых являются равные правильные многоугольники, и в каждой вершине которых сходится одинаковое число граней. Если в этом определении допустить, чтобы гранями многогранника могли быть различные правильные многоугольники, то получим многогранники, которые называются полуправильными (равноугольно полуправильными).

Полуправильным многогранником называется выпуклый многогранник, гранями которого являются правильные многоугольники (возможно, и с разным числом сторон), и все многогранные углы равны.

К полуправильным многогранникам относятся правильные n-угольные призмы, все ребра которых равны. Например, правильная пятиугольная призма на рисунке 4, а имеет своими гранями два правильных пятиугольника - основания призмы и пять квадратов, образующих боковую поверхность призмы. К полуправильным многогранникам относятся и так называемые антипризмы. На рисунке 4, б мы видим пятиугольную антипризму, полученную из пятиугольной призмы поворотом одного из оснований относительно другого на угол 36. Каждая вершина верхнего и нижнего оснований соединена с двумя ближайшими вершинами другого основания.

а б в

Кроме этих двух бесконечных серий полуправильных многогранников имеется еще 13 полуправильных многогранников которые впервые открыл и описал Архимед - это тела Архимеда.

Самые простые из них получаются из правильных многогранников операцией "усечения", состоящей в отсечении плоскостями углов многогранника. Если срезать углы тетраэдра плоскостями, каждая из которых отсекает третью часть его ребер, выходящих из одной вершины, то получим усеченный тетраэдр, имеющий восемь граней (рис. 4, в ). Из них четыре - правильные шестиугольники и четыре - правильные треугольники. В каждой вершине этого многогранника сходятся три грани.

Если указанным образом срезать вершины октаэдра и икосаэдра, то получим соответственно усеченный октаэдр (рис. 5, а) и усеченный икосаэдр (рис. 5, б). Обратите внимание на то, что поверхность футбольного мяча изготавливают в форме поверхности усеченного икосаэдра. Из куба и додекаэдра также можно получить усеченный куб (рис. 5,в) и усеченный додекаэдр (рис. 5, г).

а б в г

Мы рассмотрели 4 из 13 описанных Архимедом полуправильных многогранников. Оставшиеся - многогранники более сложного типа.

Из истории

Весьма оригинальна космологическая гипотеза Кеплера, в которой он попытался связать некоторые свойства Солнечной системы со свойствами правильных многогранников. Кеплер предположил, что расстояния между шестью известными тогда планетам выражаются через размеры пяти правильных выпуклых многогранников (Платоновых тел). Между каждой парой небесных сфер, по которым, согласно этой гипотезе, вращаются планеты, Кеплер вписал одно из Платоновых тел. Вокруг сферы Меркурия, ближайшей к Солнцу планеты, описан октаэдр. Этот октаэдр вписан в сферу Венеры, вокруг которой описан икосаэдр. Вокруг икосаэдра описана сфера Земли, а вокруг этой сферы - додекаэдр.

Серьезный шаг в науке о многогранниках был сделан в XVIII веке Леонардом Эйлером (1707-1783), который без преувеличения «поверил алгеброй гармонию». Теорема Эйлера о соотношении между числом вершин, ребер и граней выпуклого многогранника, доказательство которой Эйлер опубликовал в 1758 г. в «Записках Петербургской академии наук», окончательно навела математический порядок в многообразном мире многогранников.

Вершины + Грани - Рёбра = 2.

Элементы симметрии правильных многогранников

Некоторые из правильных и полуправильных тел встречаются в природе в виде кристаллов, другие - в виде вирусов, простейших микроорганизмов

Звездчатые многогранники

Звездчатые многогранники получаются из правильных многогранников продолжением граней или ребер аналогично тому, как правильные звездчатые многоугольники получаются продолжением сторон правильных многоугольников.

Первые два правильных звездчатых многогранника были открыты И. Кеплером (1571-1630), а два других почти 200 лет спустя построил французский математик и механик Л. Пуансо (1777-1859). Именно поэтому правильные звездчатые многогранники называются телами Кеплера-Пуансо.

В работе "О многоугольниках и многогранниках" (1810) Пуансо описал четыре правильных звездчатых многогранника, но вопрос о существовании других таких многогранников оставался открытым. Ответ на него был дан год спустя, в 1811 году, французским математиком О. Коши (1789-1857). В работе "Исследование о многогранниках" он доказал, что других правильных звездчатых многогранников не существует.

Рассмотрим вопрос о том, из каких правильных многогранников можно получить правильные звездчатые многогранники. Из тетраэдра, куба и октаэдра правильные звездчатые многогранники не получаются. Возьмем додекаэдр. Продолжение его ребер приводит к замене каждой грани звездчатым правильным пятиугольником (рис. 30,а), и в результате возникает многогранник, который называется малым звездчатым додекаэдром (рис. 30,б).

При продолжении граней додекаэдра возникают две возможности. Во-первых, если рассматривать правильные пятиугольники, то получится так называемый большой додекаэдр (рис. 31). Если же, во-вторых, в качестве граней рассматривать звездчатые пятиугольники, то получается большой звездчатый додекаэдр (рис. 32).

Икосаэдр имеет одну звездчатую форму. При продолжении граней правильного икосаэдра получается большой икосаэдр (рис. 33).

Таким образом, существуют 4 типа правильных звездчатых многогранников.

Звездчатые многогранники очень декоративны, что позволяет широко применять их в ювелирной промышленности при изготовлении всевозможных украшений.

Многие формы звездчатых многогранников подсказывает сама природа. Снежинки - это звездчатые многогранники (рис 34). С древности люди пытались описать все возможные типы снежинок, составляли специальные атласы. Сейчас известно несколько тысяч различных типов снежинок.


Похожая информация.


English: Wikipedia is making the site more secure. You are using an old web browser that will not be able to connect to Wikipedia in the future. Please update your device or contact your IT administrator.

中文: 维基百科正在使网站更加安全。您正在使用旧的浏览器,这在将来无法连接维基百科。请更新您的设备或联络您的IT管理员。以下提供更长,更具技术性的更新(仅英语)。

Español: Wikipedia está haciendo el sitio más seguro. Usted está utilizando un navegador web viejo que no será capaz de conectarse a Wikipedia en el futuro. Actualice su dispositivo o contacte a su administrador informático. Más abajo hay una actualización más larga y más técnica en inglés.

ﺎﻠﻋﺮﺒﻳﺓ: ويكيبيديا تسعى لتأمين الموقع أكثر من ذي قبل. أنت تستخدم متصفح وب قديم لن يتمكن من الاتصال بموقع ويكيبيديا في المستقبل. يرجى تحديث جهازك أو الاتصال بغداري تقنية المعلومات الخاص بك. يوجد تحديث فني أطول ومغرق في التقنية باللغة الإنجليزية تاليا.

Français: Wikipédia va bientôt augmenter la sécurité de son site. Vous utilisez actuellement un navigateur web ancien, qui ne pourra plus se connecter à Wikipédia lorsque ce sera fait. Merci de mettre à jour votre appareil ou de contacter votre administrateur informatique à cette fin. Des informations supplémentaires plus techniques et en anglais sont disponibles ci-dessous.

日本語: ウィキペディアではサイトのセキュリティを高めています。ご利用のブラウザはバージョンが古く、今後、ウィキペディアに接続できなくなる可能性があります。デバイスを更新するか、IT管理者にご相談ください。技術面の詳しい更新情報は以下に英語で提供しています。

Deutsch: Wikipedia erhöht die Sicherheit der Webseite. Du benutzt einen alten Webbrowser, der in Zukunft nicht mehr auf Wikipedia zugreifen können wird. Bitte aktualisiere dein Gerät oder sprich deinen IT-Administrator an. Ausführlichere (und technisch detailliertere) Hinweise findest Du unten in englischer Sprache.

Italiano: Wikipedia sta rendendo il sito più sicuro. Stai usando un browser web che non sarà in grado di connettersi a Wikipedia in futuro. Per favore, aggiorna il tuo dispositivo o contatta il tuo amministratore informatico. Più in basso è disponibile un aggiornamento più dettagliato e tecnico in inglese.

Magyar: Biztonságosabb lesz a Wikipédia. A böngésző, amit használsz, nem lesz képes kapcsolódni a jövőben. Használj modernebb szoftvert vagy jelezd a problémát a rendszergazdádnak. Alább olvashatod a részletesebb magyarázatot (angolul).

Svenska: Wikipedia gör sidan mer säker. Du använder en äldre webbläsare som inte kommer att kunna läsa Wikipedia i framtiden. Uppdatera din enhet eller kontakta din IT-administratör. Det finns en längre och mer teknisk förklaring på engelska längre ned.

हिन्दी: विकिपीडिया साइट को और अधिक सुरक्षित बना रहा है। आप एक पुराने वेब ब्राउज़र का उपयोग कर रहे हैं जो भविष्य में विकिपीडिया से कनेक्ट नहीं हो पाएगा। कृपया अपना डिवाइस अपडेट करें या अपने आईटी व्यवस्थापक से संपर्क करें। नीचे अंग्रेजी में एक लंबा और अधिक तकनीकी अद्यतन है।

We are removing support for insecure TLS protocol versions, specifically TLSv1.0 and TLSv1.1, which your browser software relies on to connect to our sites. This is usually caused by outdated browsers, or older Android smartphones. Or it could be interference from corporate or personal "Web Security" software, which actually downgrades connection security.

You must upgrade your web browser or otherwise fix this issue to access our sites. This message will remain until Jan 1, 2020. After that date, your browser will not be able to establish a connection to our servers.